IDEAS home Printed from
   My bibliography  Save this article

The use of encompassing tests for forecast combinations


  • Turgut Kışınbay


This paper proposes an algorithm that uses forecast encompassing tests for combining forecasts when there are a large number of forecasts that might enter the combination. The algorithm excludes a forecast from the combination if it is encompassed by another forecast. To assess the usefulness of this approach, an extensive empirical analysis is undertaken using a US macroeconomic dataset. The results are encouraging; the algorithm forecasts outperform benchmark model forecasts, in a mean square error (MSE) sense, in a majority of cases. The paper also compares the empirical performance of different approaches to forecast combination, and provides a rule-of‐thumb cut‐off point for the thick‐modeling approach. Copyright (C) 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Turgut Kışınbay, 2010. "The use of encompassing tests for forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(8), pages 715-727, December.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:8:p:715-727

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Nieto, Fabio H. & Guerrero, Victor M., 1995. "Kalman filter for singular and conditional state-space models when the system state and the observational error are correlated," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 303-310, March.
    2. Víctor Guerrero & Fabio Nieto, 1999. "Temporal and contemporaneous disaggregation of multiple economic time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 459-489, December.
    3. repec:adr:anecst:y:1987:i:6-7:p:12 is not listed on IDEAS
    4. repec:adr:anecst:y:1987:i:6-7 is not listed on IDEAS
    5. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    6. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    7. F. Javier Fernandez Macho & Andrew C. Harvey & James H. Stock, 1987. "Forecasting and Interpolation Using Vector Autoregressions with Common Trends," Annals of Economics and Statistics, GENES, issue 6-7, pages 279-287.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    2. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    3. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
    4. Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
    5. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-02, Central Bank of Cyprus.
    6. Morales-Arias, Leonardo & Dross, Alexander, 2010. "Adaptive forecasting of exchange rates with panel data," Kiel Working Papers 1656, Kiel Institute for the World Economy (IfW).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:8:p:715-727. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.