IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2021-93-2.html
   My bibliography  Save this article

On the Interplay Among Multiple Factors: Effects of Factor Configuration in a Proof-Of-Concept Migration Agent-Based Model

Author

Abstract

Many researchers have addressed what factors should be included in their models of coupled natural-human systems (CNHSs). However, few studies have explored how these factors should be incorporated (factor configuration). Theoretical underpinning of the factor configuration may lead to a better understanding of systematic patterns and sustainable CNHS management. In particular, we ask: (1) can factor configuration explain CNHS behaviors based on its theoretical implications? and (2) when disturbed by shocks, do CNHSs respond differently under varying factor configurations? A proof-of-concept migration agent-based model (ABM) was developed and used as a platform to investigate the effects of factor configuration on system dynamics and outcomes. Here, two factors, social ties and water availability, were assumed to have alternative substitutable, complementary, or adaptable relationships in influencing migration decisions. We analyzed how populations are distributed over different regions along a water availability gradient and how regions are culturally mixed under different factor configurations. We also subjected the system to a shock scenario of dropping 50% of water availability in one region. We found that substitutability acted as a bu er against the effect of water deficiency and prevented cultural mixing of the population by keeping residents in their home regions and slowing down residential responses against the shock. Complementarity led to the sensitive migration behavior of residents, accelerating regional migration and cultural mixing. Adaptability caused residents to stay longer in new regions, which gradually led to a well-mixed cultural condition. All together, substitutability, complementarity, and adaptability gave rise to different emergent patterns. Our findings highlight the importance of how, not just what, factors are included in a CNHS ABM, a lesson that is particularly applicable to models of interdisciplinary problems where factors of diverse nature must be incorporated.

Suggested Citation

  • Woi Sok Oh & à lvaro Carmona-Cabrero & Rafael Muñoz-Carpena & Rachata Muneepeerakul, 2022. "On the Interplay Among Multiple Factors: Effects of Factor Configuration in a Proof-Of-Concept Migration Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(2), pages 1-7.
  • Handle: RePEc:jas:jasssj:2021-93-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/25/2/7/7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rong Wang & John A. Dearing & Peter G. Langdon & Enlou Zhang & Xiangdong Yang & Vasilis Dakos & Marten Scheffer, 2012. "Flickering gives early warning signals of a critical transition to a eutrophic lake state," Nature, Nature, vol. 492(7429), pages 419-422, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Clift & Sarah Sim & Henry King & Jonathan L. Chenoweth & Ian Christie & Julie Clavreul & Carina Mueller & Leo Posthuma & Anne-Marie Boulay & Rebecca Chaplin-Kramer & Julia Chatterton & Fabrice , 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    2. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    3. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    4. Simon Willcock & Gregory S. Cooper & John Addy & John A. Dearing, 2023. "Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers," Nature Sustainability, Nature, vol. 6(11), pages 1331-1342, November.
    5. Manfred Füllsack & Daniel Reisinger & Marie Kapeller & Georg Jäger, 2022. "Early warning signals from the periphery," Journal of Computational Social Science, Springer, vol. 5(1), pages 665-685, May.
    6. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    7. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    8. Juan Miguel Rodriguez Lopez & Katja Tielbörger & Cornelia Claus & Christiane Fröhlich & Marc Gramberger & Jürgen Scheffran, 2019. "A Transdisciplinary Approach to Identifying Transboundary Tipping Points in a Contentious Area: Experiences from across the Jordan River Region," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    9. James Tan & Siew Ann Cheong, 2016. "The Regime Shift Associated with the 2004–2008 US Housing Market Bubble," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-8, September.
    10. Odirilwe Selomane & Belinda Reyers & Reinette Biggs & Maike Hamann, 2019. "Harnessing Insights from Social-Ecological Systems Research for Monitoring Sustainable Development," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    11. Manfred Füllsack & Daniel Reisinger, 2021. "Transition prediction in the Ising-model," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    12. Paul Hutchings & Simon Willcock & Kenneth Lynch & Dilshaad Bundhoo & Tim Brewer & Sarah Cooper & Daniel Keech & Sneha Mekala & Prajna Paramita Mishra & Alison Parker & Charlie M. Shackleton & Kongala , 2022. "Understanding rural–urban transitions in the Global South through peri-urban turbulence," Nature Sustainability, Nature, vol. 5(11), pages 924-930, November.
    13. Thomas M. Bury & Daniel Dylewsky & Chris T. Bauch & Madhur Anand & Leon Glass & Alvin Shrier & Gil Bub, 2023. "Predicting discrete-time bifurcations with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Abram, Joseph J. & Dyke, James G., 2018. "Structural Loop Analysis of Complex Ecological Systems," Ecological Economics, Elsevier, vol. 154(C), pages 333-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2021-93-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.