IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i6p988-1000.html
   My bibliography  Save this article

Inventory Control with Limited Capacity and Advance Demand Information

Author

Listed:
  • Özalp Özer

    (Department of Management Science and Engineering, Stanford University, Stanford, California 94305)

  • Wei Wei

    (Morgan Stanley, 20 Cabot Square, Canary Warf, London, United Kingdom)

Abstract

Manufacturers make production decisions and carry inventory to satisfy uncertain demand. When holding and shortage costs are high, carrying inventory could be even more expensive for a capacitated production system. Recent developments in information technology and sales strategies enabled firms to acquire, collect, or induce advance demand information. We address a periodic-review, stochastic, capacitated, finite and infinite horizon production system faced by a manufacturer who has the ability to obtain advance demand information. We establish optimal policies and characterize their behavior with respect to capacity, fixed costs, advance demand information, and the planning horizon. With a numerical study, we quantify the value of advance demand information and additional capacity for specific problem instances. We illustrate how advance demand information can be a substitute for capacity and inventory.

Suggested Citation

  • Özalp Özer & Wei Wei, 2004. "Inventory Control with Limited Capacity and Advance Demand Information," Operations Research, INFORMS, vol. 52(6), pages 988-1000, December.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:6:p:988-1000
    DOI: 10.1287/opre.1040.0126
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0126
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel Karlin, 1960. "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, INFORMS, vol. 6(3), pages 231-258, April.
    2. Suresh P. Sethi & Feng Cheng, 1997. "Optimality of ( s , S ) Policies in Inventory Models with Markovian Demand," Operations Research, INFORMS, vol. 45(6), pages 931-939, December.
    3. Warren H. Hausman, 1969. "Sequential Decision Problems: A Model to Exploit Existing Forecasters," Management Science, INFORMS, vol. 16(2), pages 93-111, October.
    4. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands II. The Discounted-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 208-215, May.
    5. Fangruo Chen, 2001. "Market Segmentation, Advanced Demand Information, and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 3(1), pages 53-67, February.
    6. L. Beril Toktay & Lawrence M. Wein, 2001. "Analysis of a Forecasting-Production-Inventory System with Stationary Demand," Management Science, INFORMS, vol. 47(9), pages 1268-1281, September.
    7. Paul Zipkin, 1989. "Critical Number Policies for Inventory Models with Periodic Data," Management Science, INFORMS, vol. 35(1), pages 71-80, January.
    8. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    9. Rema Hariharan & Paul Zipkin, 1995. "Customer-Order Information, Leadtimes, and Inventories," Management Science, INFORMS, vol. 41(10), pages 1599-1607, October.
    10. A. Federgruen & P. Zipkin, 1986. "An Inventory Model with Limited Production Capacity and Uncertain Demands I. The Average-Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 193-207, May.
    11. Roman Kapuściński & Sridhar Tayur, 1998. "A Capacitated Production-Inventory Model with Periodic Demand," Operations Research, INFORMS, vol. 46(6), pages 899-911, December.
    12. Chen Shaoxiang & M. Lambrecht, 1996. "X-Y Band and Modified ( s , S ) Policy," Operations Research, INFORMS, vol. 44(6), pages 1013-1019, December.
    13. Jing-Sheng Song & Paul Zipkin, 1993. "Inventory Control in a Fluctuating Demand Environment," Operations Research, INFORMS, vol. 41(2), pages 351-370, April.
    14. Gallego, Guillermo & Scheller-Wolf, Alan, 2000. "Capacitated inventory problems with fixed order costs: Some optimal policy structure," European Journal of Operational Research, Elsevier, vol. 126(3), pages 603-613, November.
    15. Arthur F. Veinott, Jr., 1965. "Optimal Policy for a Multi-Product, Dynamic, Nonstationary Inventory Problem," Management Science, INFORMS, vol. 12(3), pages 206-222, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    2. Guillermo Gallego & Özalp Özer, 2003. "Optimal Replenishment Policies for Multiechelon Inventory Problems Under Advance Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 157-175, February.
    3. Iida, Tetsuo, 2002. "A non-stationary periodic review production-inventory model with uncertain production capacity and uncertain demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 670-683, August.
    4. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    5. Woonghee Tim Huh & Ganesh Janakiraman & Mahesh Nagarajan, 2011. "Average Cost Single-Stage Inventory Models: An Analysis Using a Vanishing Discount Approach," Operations Research, INFORMS, vol. 59(1), pages 143-155, February.
    6. Li Chen & Jing-Sheng Song & Yue Zhang, 2017. "Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights," Operations Research, INFORMS, vol. 65(5), pages 1231-1249, October.
    7. Gavirneni, Srinagesh, 2006. "Price fluctuations, information sharing, and supply chain performance," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1651-1663, November.
    8. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    9. Retsef Levi & Robin O. Roundy & David B. Shmoys & Van Anh Truong, 2008. "Approximation Algorithms for Capacitated Stochastic Inventory Control Models," Operations Research, INFORMS, vol. 56(5), pages 1184-1199, October.
    10. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    11. Fangruo Chen & Jing-Sheng Song, 2001. "Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand," Operations Research, INFORMS, vol. 49(2), pages 226-234, April.
    12. Kaijie Zhu & Ulrich W. Thonemann, 2004. "Modeling the Benefits of Sharing Future Demand Information," Operations Research, INFORMS, vol. 52(1), pages 136-147, February.
    13. Paul Zipkin, 2008. "On the Structure of Lost-Sales Inventory Models," Operations Research, INFORMS, vol. 56(4), pages 937-944, August.
    14. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    15. Han Zhu, 2022. "A simple heuristic policy for stochastic inventory systems with both minimum and maximum order quantity requirements," Annals of Operations Research, Springer, vol. 309(1), pages 347-363, February.
    16. Yossi Aviv & Awi Federgruen, 2001. "Design for Postponement: A Comprehensive Characterization of Its Benefits Under Unknown Demand Distributions," Operations Research, INFORMS, vol. 49(4), pages 578-598, August.
    17. Tan, Tarkan & Gullu, Refik & Erkip, Nesim, 2007. "Modelling imperfect advance demand information and analysis of optimal inventory policies," European Journal of Operational Research, Elsevier, vol. 177(2), pages 897-923, March.
    18. Jingchen Wu & Xiuli Chao, 2014. "Optimal Control of a Brownian Production/Inventory System with Average Cost Criterion," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 163-189, February.
    19. Woonghee Tim Huh & Ganesh Janakiraman, 2012. "Technical Note---On Optimal Policies for Inventory Systems with Batch Ordering," Operations Research, INFORMS, vol. 60(4), pages 797-802, August.
    20. F. Kleintje-Ell & G. Kiesmüller, 2015. "Cost minimising order schedules for a capacitated inventory system," Annals of Operations Research, Springer, vol. 229(1), pages 501-520, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:6:p:988-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.