IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i4p615-622.html
   My bibliography  Save this article

On the Asymptotic Optimality of the SPT Rule for the Flow Shop Average Completion Time Problem

Author

Listed:
  • Cathy H. Xia

    (IBM Thomas J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598)

  • George J. Shanthikumar

    (Department of IEOR and the Walter A. Haas School of Business, University of California at Berkeley, Berkeley, California 94720)

  • Peter W. Glynn

    (Department of EES & OR, Stanford University, Stanford, California 94305)

Abstract

Consider a flow shop with M machines in series, through which a set of jobs are to be processed. All jobs have the same routing, and they have to be processed in the same order on each of the machines. The objective is to determine such an order of the jobs, often referred to as a permutation schedule, so as to minimize the total completion time of all jobs on the final machine. We show that when the processing times are statistically exchangeable across machines and independent across jobs, the Shortest ProcessingTime first (SPT) scheduling rule, based on the total service requirement of each job on all M machines, is asymptotically optimal as the total number of jobs goes to infinity. This extends a recent result of Kaminsky and Simchi-Levi (1996), in which a crucial assumption is that the processing times on all M machines for all jobs must be i.i.d.. Our work provides an alternative proof using martingales, which can also be carried out directly to show the asymptotic optimality of the weighted SPT rule for the Flow Shop Weighted Completion Time Problem.

Suggested Citation

  • Cathy H. Xia & George J. Shanthikumar & Peter W. Glynn, 2000. "On the Asymptotic Optimality of the SPT Rule for the Flow Shop Average Completion Time Problem," Operations Research, INFORMS, vol. 48(4), pages 615-622, August.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:4:p:615-622
    DOI: 10.1287/opre.48.4.615.12423
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.4.615.12423
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.4.615.12423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin J. Krone & Kenneth Steiglitz, 1974. "Heuristic-Programming Solution of a Flowshop-Scheduling Problem," Operations Research, INFORMS, vol. 22(3), pages 629-638, June.
    2. J. George Shanthikumar & Susan H. Xu, 1997. "Asymptotically Optimal Routing and Servive Rate Allocation in a Multiserver Queueing System," Operations Research, INFORMS, vol. 45(3), pages 464-469, June.
    3. Frederick S. Hillier & Ronald W. Boling, 1979. "On the Optimal Allocation of Work in Symmetrically Unbalanced Production Line Systems with Variable Operation Times," Management Science, INFORMS, vol. 25(8), pages 721-728, August.
    4. Eginhard J. Muth, 1979. "The Reversibility Property of Production Lines," Management Science, INFORMS, vol. 25(2), pages 152-158, February.
    5. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    2. Mabel C. Chou & Hui Liu & Maurice Queyranne & David Simchi-Levi, 2006. "On the Asymptotic Optimality of a Simple On-Line Algorithm for the Stochastic Single-Machine Weighted Completion Time Problem and Its Extensions," Operations Research, INFORMS, vol. 54(3), pages 464-474, June.
    3. Philip Kaminsky & Onur Kaya, 2008. "Scheduling and due‐date quotation in a make‐to‐order supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(5), pages 444-458, August.
    4. Nasini, Stefano & Nessah, Rabia, 2021. "An almost exact solution to the min completion time variance in a single machine," European Journal of Operational Research, Elsevier, vol. 294(2), pages 427-441.
    5. Hui Liu & Maurice Queyranne & David Simchi‐Levi, 2005. "On the asymptotic optimality of algorithms for the flow shop problem with release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 232-242, April.
    6. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    7. Kaminsky, Philip & Kaya, Onur, 2008. "Inventory positioning, scheduling and lead-time quotation in supply chains," International Journal of Production Economics, Elsevier, vol. 114(1), pages 276-293, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Kaminsky & David Simchi-Levi, 2001. "The Asymptotic Optimality of the SPT Rule for the Flow Shop Mean Completion Time Problem," Operations Research, INFORMS, vol. 49(2), pages 293-304, April.
    2. Xiang Zhong & Hyo Kyung Lee & Molly Williams & Sally Kraft & Jeffery Sleeth & Richard Welnick & Lori Hauschild & Jingshan Li, 2018. "Workload balancing: staffing ratio analysis for primary care redesign," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 6-29, June.
    3. Kamburowski, Jerzy, 1999. "Stochastically minimizing the makespan in two-machine flow shops without blocking," European Journal of Operational Research, Elsevier, vol. 112(2), pages 304-309, January.
    4. Hyoungtae Kim & Sungsoo Park, 1999. "Optimality of the Symmetric Workload Allocation in a Single-Server Flow Line System," Management Science, INFORMS, vol. 45(3), pages 449-451, March.
    5. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
    6. Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
    7. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    8. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    9. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    10. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    11. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    12. P J Kalczynski & J Kamburowski, 2004. "Generalization of Johnson's and Talwar's scheduling rules in two-machine stochastic flow shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1358-1362, December.
    13. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    14. T.C.E. Cheng & B.M.T. Lin & A. Toker, 2000. "Makespan minimization in the two‐machine flowshop batch scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 128-144, March.
    15. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    16. Paulli, Jan, 1995. "A hierarchical approach for the FMS scheduling problem," European Journal of Operational Research, Elsevier, vol. 86(1), pages 32-42, October.
    17. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    18. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    19. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    20. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:4:p:615-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.