IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v29y1983i5p559-566.html
   My bibliography  Save this article

Comparing for Different Time Series Methods the Value of Technical Expertise Individualized Analysis, and Judgmental Adjustment

Author

Listed:
  • Robert Carbone

    (Université Laval, Quebec, Canada)

  • Allan Andersen

    (University of Sydney, Australia)

  • Yvan Corriveau

    (Université Laval, Quebec, Canada)

  • Paul Piat Corson

    (Université Laval, Quebec, Canada)

Abstract

Technical expertise, human judgment, and the time spent by an analyst are often believed to be key factors in determining the accuracy of forecasts obtained with the use of a time series forecasting method. A control experiment was designed to empirically test these beliefs. It involved the participation of experts and persons with limited training. Forecasts were generated for 25 time series with the use of the Box-Jenkins, Holt-Winters and Carbone-Longini filtering methods. Results of the nonparametric tests used to compare the forecasts confirmed that technical expertise, judgmental adjustment, and individualized analyses were of little value in improving forecast accuracy as compared to black box approaches. In addition, simpler methods were found to provide significantly more accurate forecasts than the Box-Jenkins method when applied by persons with limited training.

Suggested Citation

  • Robert Carbone & Allan Andersen & Yvan Corriveau & Paul Piat Corson, 1983. "Comparing for Different Time Series Methods the Value of Technical Expertise Individualized Analysis, and Judgmental Adjustment," Management Science, INFORMS, vol. 29(5), pages 559-566, May.
  • Handle: RePEc:inm:ormnsc:v:29:y:1983:i:5:p:559-566
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.29.5.559
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ian I. Mitroff, 1972. "The Myth of Objectivity OR Why Science Needs a New Psychology of Science," Management Science, INFORMS, vol. 18(10), pages 613-618, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Vera Shanshan & Goodwin, Paul & Song, Haiyan, 2014. "Accuracy and bias of experts’ adjusted forecasts," Annals of Tourism Research, Elsevier, vol. 48(C), pages 156-174.
    2. Deschamps, Elaine, 2004. "The impact of institutional change on forecast accuracy: A case study of budget forecasting in Washington State," International Journal of Forecasting, Elsevier, vol. 20(4), pages 647-657.
    3. Niematallah Elamin & Mototsugu Fukushige, 2017. "Integrating judgment in statistical demand forecasting: An approach to confront uncertainty," Discussion Papers in Economics and Business 17-20, Osaka University, Graduate School of Economics and Osaka School of International Public Policy (OSIPP).
    4. Welch, Eric & Bretschneider, Stuart & Rohrbaugh, John, 1998. "Accuracy of judgmental extrapolation of time series data: Characteristics, causes, and remediation strategies for forecasting," International Journal of Forecasting, Elsevier, vol. 14(1), pages 95-110, March.
    5. Eroglu, Cuneyt & Croxton, Keely L., 2010. "Biases in judgmental adjustments of statistical forecasts: The role of individual differences," International Journal of Forecasting, Elsevier, vol. 26(1), pages 116-133, January.
    6. Vokurka, Robert J. & Flores, Benito E. & Pearce, Stephen L., 1996. "Automatic feature identification and graphical support in rule-based forecasting: a comparison," International Journal of Forecasting, Elsevier, vol. 12(4), pages 495-512, December.
    7. Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.
    8. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.

    More about this item

    Keywords

    forecasting/time series;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:29:y:1983:i:5:p:559-566. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.