IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i6p1579-1610.html
   My bibliography  Save this article

Computing Optimality Certificates for Convex Mixed-Integer Nonlinear Problems

Author

Listed:
  • Katrin Halbig

    (Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany)

  • Lukas Hümbs

    (Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany)

  • Florian Rösel

    (Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany)

  • Lars Schewe

    (School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom)

  • Dieter Weninger

    (Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany)

Abstract

Every optimization problem has a corresponding verification problem that checks whether a given optimal solution is in fact optimal. In the literature, there are a lot of such ways to verify optimality for a given solution, for example, the branch-and-bound tree. To simplify this task, optimality certificates were introduced for convex mixed-integer nonlinear programs, and it was shown that the sizes of the certificates are bounded in terms of the number of integer variables. We introduce an algorithm to compute the certificates and conduct computational experiments. Through the experiments, we show that the optimality certificates can be surprisingly small.

Suggested Citation

  • Katrin Halbig & Lukas Hümbs & Florian Rösel & Lars Schewe & Dieter Weninger, 2024. "Computing Optimality Certificates for Convex Mixed-Integer Nonlinear Problems," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1579-1610, December.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1579-1610
    DOI: 10.1287/ijoc.2022.0099
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0099
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    2. Bikhchandani, Sushil & Ostroy, Joseph M., 2002. "The Package Assignment Model," Journal of Economic Theory, Elsevier, vol. 107(2), pages 377-406, December.
    3. Björn Geißler & Antonio Morsi & Lars Schewe & Martin Schmidt, 2018. "Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 309-323, May.
    4. Mark S. Daskin & Kayse Lee Maass, 2015. "The p-Median Problem," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 21-45, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erlanson, Albin & Szwagrzak, Karol, 2013. "Strategy-Proof Package Assignment," Working Papers 2013:43, Lund University, Department of Economics.
    2. Mishra, Debasis & Parkes, David C., 2007. "Ascending price Vickrey auctions for general valuations," Journal of Economic Theory, Elsevier, vol. 132(1), pages 335-366, January.
    3. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    4. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    5. Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
    6. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    7. Anthony M. Kwasnica & John O. Ledyard & Dave Porter & Christine DeMartini, 2005. "A New and Improved Design for Multiobject Iterative Auctions," Management Science, INFORMS, vol. 51(3), pages 419-434, March.
    8. Bikhchandani, Sushil & Ostroy, Joseph M., 2006. "Ascending price Vickrey auctions," Games and Economic Behavior, Elsevier, vol. 55(2), pages 215-241, May.
    9. Laurent Lamy, 2010. "Core-selecting package auctions: a comment on revenue-monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 503-510, July.
    10. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.
    11. Schnizler, Björn & Neumann, Dirk & Veit, Daniel & Napoletano, Mauro & Catalano, Michele & Gallegati, Mauro & Reinicke, Michael & Streitberger, Werner & Eymann, Torsten, 2005. "Environmental analysis for application layer networks," Bayreuth Reports on Information Systems Management 1, University of Bayreuth, Chair of Information Systems Management.
    12. Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
    13. Oktay Günlük & Lászlo Ladányi & Sven de Vries, 2005. "A Branch-and-Price Algorithm and New Test Problems for Spectrum Auctions," Management Science, INFORMS, vol. 51(3), pages 391-406, March.
    14. Sushil Bikhchandani & Shurojit Chatterjee & Arunava Sen, 2004. "Incentive Compatibility in Multi-unit Auctions," Levine's Bibliography 122247000000000750, UCLA Department of Economics.
    15. Lawrence M. Ausubel, 2006. "An Efficient Dynamic Auction for Heterogeneous Commodities," American Economic Review, American Economic Association, vol. 96(3), pages 602-629, June.
    16. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    17. Michel Le Breton & Juan Moreno-Ternero & Alexei Savvateev & Shlomo Weber, 2013. "Stability and fairness in models with a multiple membership," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 673-694, August.
    18. Tomoya Kazumura & Shigehiro Serizawa, 2016. "Efficiency and strategy-proofness in object assignment problems with multi-demand preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(3), pages 633-663, October.
    19. Zhiling Guo & Gary J. Koehler & Andrew B. Whinston, 2012. "A Computational Analysis of Bundle Trading Markets Design for Distributed Resource Allocation," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 823-843, September.
    20. Danny Nguyen & Igor Pak, 2020. "The Computational Complexity of Integer Programming with Alternations," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 191-204, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:6:p:1579-1610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.