IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i2p287-300.html
   My bibliography  Save this article

Multisourcing Supply Network Design: Two-Stage Chance-Constrained Model, Tractable Approximations, and Computational Results

Author

Listed:
  • Yongzhen Li

    (Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China)

  • Jia Shu

    (Department of Management Science and Engineering, School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096, China)

  • Miao Song

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China)

  • Jiawei Zhang

    (Department of Information, Operations, and Management Sciences, Stern School of Business, New York University, New York, New York 10012 and New York University Shanghai, Shanghai 200122, China)

  • Huan Zheng

    (Department of Management Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract

In this paper, we study a multisourcing supply network design problem, in which each retailer faces uncertain demand and can source products from more than one distribution center (DC). The decisions to be simultaneously optimized include DC locations and inventory levels, which set of DCs serves each retailer, and the amount of shipments from DCs to retailers. We propose a nonlinear mixed integer programming model with a joint chance constraint describing a certain service level. Two approaches—set-wise approximation and linear decision rule-based approximation—are constructed to robustly approximate the service level chance constraint with incomplete demand information. Both approaches yield sparse multisourcing distribution networks that effectively match uncertain demand using on-hand inventory, and hence successfully reach a high service level. We show through extensive numerical experiments that our approaches outperform other commonly adopted approximations of the chance constraint.

Suggested Citation

  • Yongzhen Li & Jia Shu & Miao Song & Jiawei Zhang & Huan Zheng, 2017. "Multisourcing Supply Network Design: Two-Stage Chance-Constrained Model, Tractable Approximations, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 287-300, May.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:2:p:287-300
    DOI: 10.1287/ijoc.2016.0730
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2016.0730
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2016.0730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.
    4. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    5. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    6. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    7. Leyla Ozsen & Mark S. Daskin & Collette R. Coullard, 2009. "Facility Location Modeling and Inventory Management with Multisourcing," Transportation Science, INFORMS, vol. 43(4), pages 455-472, November.
    8. Robert Aboolian & Tingting Cui & Zuo-Jun Max Shen, 2013. "An Efficient Approach for Solving Reliable Facility Location Models," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 720-729, November.
    9. Yu Li & Jia Shu & Xi Wang & Naihua Xiu & Dachuan Xu & Jiawei Zhang, 2013. "Approximation Algorithms for Integrated Distribution Network Design Problems," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 572-584, August.
    10. Leyla Ozsen & Collette R. Coullard & Mark S. Daskin, 2008. "Capacitated warehouse location model with risk pooling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 295-312, June.
    11. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    12. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    13. Jia Shu & Chung-Piaw Teo & Zuo-Jun Max Shen, 2005. "Stochastic Transportation-Inventory Network Design Problem," Operations Research, INFORMS, vol. 53(1), pages 48-60, February.
    14. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    15. Chung-Piaw Teo & Jia Shu, 2004. "Warehouse-Retailer Network Design Problem," Operations Research, INFORMS, vol. 52(3), pages 396-408, June.
    16. Wim Van Ackooij & René Henrion & Andris Möller & Riadh Zorgati, 2010. "On probabilistic constraints induced by rectangular sets and multivariate normal distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 535-549, June.
    17. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    18. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    19. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    20. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengqiao Luo & Sanjay Mehrotra, 2021. "A geometric branch and bound method for robust maximization of convex functions," Journal of Global Optimization, Springer, vol. 81(4), pages 835-859, December.
    2. Ming Zhao & Nickolas Freeman & Kai Pan, 2023. "Robust Sourcing Under Multilevel Supply Risks: Analysis of Random Yield and Capacity," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 178-195, January.
    3. Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
    4. Jia, Ruru & Gao, Jinwu & Gao, Feng, 2022. "Robust ocean zoning for conservation, fishery and marine renewable energy with co-location strategy," Applied Energy, Elsevier, vol. 328(C).
    5. Lu, Xiaohan & Cheng, Chun, 2021. "Locating facilities with resiliency to capacity failures and correlated demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjun Ni & Jia Shu & Miao Song & Dachuan Xu & Kaike Zhang, 2021. "A Branch-and-Price Algorithm for Facility Location with General Facility Cost Functions," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 86-104, January.
    2. Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
    3. Ali Diabat & Jean-Philippe Richard, 2015. "An integrated supply chain problem: a nested lagrangian relaxation approach," Annals of Operations Research, Springer, vol. 229(1), pages 303-323, June.
    4. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Chi Xie, 2018. "Tabu Search Heuristic for Joint Location-Inventory Problem with Stochastic Inventory Capacity and Practicality Constraints," Networks and Spatial Economics, Springer, vol. 18(1), pages 51-84, March.
    5. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    6. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    7. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    8. Ali Diabat & Jean-Philippe Richard & Craig Codrington, 2013. "A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design," Annals of Operations Research, Springer, vol. 203(1), pages 55-80, March.
    9. Wu, Ting & Shen, Houcai & Zhu, Cheng, 2015. "A multi-period location model with transportation economies-of-scale and perishable inventory," International Journal of Production Economics, Elsevier, vol. 169(C), pages 343-349.
    10. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    11. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    12. Lehilton L. C. Pedrosa & Maxim Sviridenko, 2018. "Integrated Supply Chain Management via Randomized Rounding," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 124-136, February.
    13. Shu, Jia & Li, Zhengyi & Shen, Houcai & Wu, Ting & Zhong, Weijun, 2012. "A logistics network design model with vendor managed inventory," International Journal of Production Economics, Elsevier, vol. 135(2), pages 754-761.
    14. Christensen, Tue Rauff Lind & Klose, Andreas, 2021. "A fast exact method for the capacitated facility location problem with differentiable convex production costs," European Journal of Operational Research, Elsevier, vol. 292(3), pages 855-868.
    15. Tancrez, Jean-Sébastien & Lange, Jean-Charles & Semal, Pierre, 2012. "A location-inventory model for large three-level supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 485-502.
    16. Amiri-Aref, Mehdi & Klibi, Walid & Babai, M. Zied, 2018. "The multi-sourcing location inventory problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 266(1), pages 72-87.
    17. Ross, Anthony & Khajehnezhad, Milad & Otieno, Wilkistar & Aydas, Osman, 2017. "Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multi-echelon formulation," European Journal of Operational Research, Elsevier, vol. 259(2), pages 664-676.
    18. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    19. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    20. Shahabi, Mehrdad & Tafreshian, Amirmahdi & Unnikrishnan, Avinash & Boyles, Stephen D., 2018. "Joint production–inventory–location problem with multi-variate normal demand," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 60-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:2:p:287-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.