IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i5p1159-1176.html
   My bibliography  Save this article

Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders

Author

Listed:
  • Xi Chen

    (Stern School of Business, New York University, New York, New York 10012)

  • Jiawei Zhang

    (Stern School of Business, New York University, New York, New York 10012; and New York University Shanghai, Shanghai, China 200122)

  • Yuan Zhou

    (Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139)

Abstract

We study the problem of how to design a sparse flexible process structure in a balanced and symmetrical production system to match supply with random demand more effectively. Our goal is to provide a sparsest design to achieve (1 − ϵ )-optimality relative to the fully flexible system. In a balanced system with n plants and n products, Chou et al. (2011) proved that there exists a graph expander with O ( n / ϵ ) arcs to achieve (1 − ϵ )-optimality for every demand realization. Wang and Zhang (2015) showed that the simple k -chain design with O ( n / ϵ ) arcs can achieve (1 − ϵ )-optimality in expectation.In this paper, we introduce a new concept called probabilistic graph expanders . We prove that a probabilistic expander with O ( n ln( 1 / ϵ )) arcs guarantees (1 − ϵ )-optimality with high probability (w.h.p.), which is a stronger notion of optimality as compared to the expected performance. Easy-to-implement randomized and deterministic constructions of probabilistic expanders are provided. We show our bound is best possible in the sense that any structure should need at least Ω( n ln(1/ ϵ )) arcs to achieve (1 − ϵ )-optimality in expectation (and hence w.h.p.). We also show that in order to achieve (1 − ϵ )-optimality in the worst case, any design would need at least Ω( n / ϵ ) arcs; and in order to achieve (1 − ϵ )-optimality in expectation, k -chain needs at least Ω( n / ϵ ) arcs.

Suggested Citation

  • Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1159-1176
    DOI: 10.1287/opre.2015.1416
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1416
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    2. Simchi-Levi, David, 2010. "Operation Rules: Delivering Customer Value through Flexible Operations," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525151, December.
    3. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    4. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    5. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    6. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    7. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    8. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    9. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    10. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    11. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    12. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    13. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    2. John N. Tsitsiklis & Kuang Xu, 2017. "Flexible Queueing Architectures," Operations Research, INFORMS, vol. 65(5), pages 1398-1413, October.
    3. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    4. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    5. Yongzhen Li & Jia Shu & Miao Song & Jiawei Zhang & Huan Zheng, 2017. "Multisourcing Supply Network Design: Two-Stage Chance-Constrained Model, Tractable Approximations, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 287-300, May.
    6. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    7. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    8. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    9. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    10. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    11. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    12. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    13. Daniel Freund & S'ebastien Martin & Jiayu Kamessi Zhao, 2024. "Two-Sided Flexibility in Platforms," Papers 2404.04709, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    2. Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
    3. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    4. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    5. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    6. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    7. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    8. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    9. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    10. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    11. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    12. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    13. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    14. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    15. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    16. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org, revised Sep 2024.
    17. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    18. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    19. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    20. Philip Kaminsky & Yang Wang, 2019. "Multi-period process flexibility with inventory," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 833-893, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1159-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.