IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i1p1-17.html
   My bibliography  Save this article

Sampling the Functional Kolmogorov Forward Equations for Nonstationary Queueing Networks

Author

Listed:
  • Jamol Pender

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14850)

Abstract

Nonstationary queueing networks are often difficult to approximate. Recent novel methods for approximating the moments of nonstationary queues use the functional version of the Kolmogorov forward equations in conjunction with orthogonal polynomial expansions. However, these methods require closed form expressions for the expectations that appear in the functional Kolmogorov forward equations. When closed form expressions cannot be easily derived, these methods cannot be used. In this paper, we present a new sampling algorithm to overcome this difficulty; our sampling algorithm accurately estimates the expectations using simulation. We apply our algorithm to priority queues, which are useful for modeling hospital triage systems. We show that our sampling algorithm accurately estimates the mean and variance of the priority queue without spending significantly more computational time than integrating ordinary differential equations. Last, we compare our sampling algorithm to the closed form analytical approximations for the Erlang-A queueing model and find that our method is comparable in time and accuracy.

Suggested Citation

  • Jamol Pender, 2017. "Sampling the Functional Kolmogorov Forward Equations for Nonstationary Queueing Networks," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 1-17, February.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:1:p:1-17
    DOI: 10.1287/ijoc.2016.0702
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2016.0702
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2016.0702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Itai Gurvich & Ohad Perry, 2012. "Overflow Networks: Approximations and Implications to Call Center Outsourcing," Operations Research, INFORMS, vol. 60(4), pages 996-1009, August.
    2. Linda Green, 2006. "Queueing Analysis in Healthcare," International Series in Operations Research & Management Science, in: Randolph W. Hall (ed.), Patient Flow: Reducing Delay in Healthcare Delivery, chapter 0, pages 281-307, Springer.
    3. Avi Mandelbaum & William A. Massey, 1995. "Strong Approximations for Time-Dependent Queues," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 33-64, February.
    4. William A. Massey, 1985. "Asymptotic Analysis of the Time Dependent M/M/1 Queue," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 305-327, May.
    5. Michael H. Rothkopf & Shmuel S. Oren, 1979. "A Closure Approximation for the Nonstationary M/M/s Queue," Management Science, INFORMS, vol. 25(6), pages 522-534, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avi Mandelbaum & Kavita Ramanan, 2010. "Directional Derivatives of Oblique Reflection Maps," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 527-558, August.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    4. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    5. Tan, Xiaoqian & Knessl, Charles & Yang, Yongzhi (Peter), 2013. "On finite capacity queues with time dependent arrival rates," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2175-2227.
    6. Gianmarco Bet & Remco van der Hofstad & Johan S. H. van Leeuwaarden, 2019. "Heavy-Traffic Analysis Through Uniform Acceleration of Queues with Diminishing Populations," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 821-864, August.
    7. Ward Whitt & Wei You, 2019. "Time-Varying Robust Queueing," Operations Research, INFORMS, vol. 67(6), pages 1766-1782, November.
    8. Rami Atar & Isaac Keslassy & Gal Mendelson, 2019. "Subdiffusive Load Balancing in Time-Varying Queueing Systems," Operations Research, INFORMS, vol. 67(6), pages 1678-1698, November.
    9. Stolletz, Raik, 2008. "Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach," European Journal of Operational Research, Elsevier, vol. 190(2), pages 478-493, October.
    10. Michael R. Taaffe & Gordon M. Clark, 1988. "Approximating nonstationary two‐priority non‐preemptive queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 125-145, February.
    11. Breton, Mylaine & Smithman, Mélanie Ann & Sasseville, Martin & Kreindler, Sara A. & Sutherland, Jason M. & Beauséjour, Marie & Green, Michael & Marshall, Emily Gard & Jbilou, Jalila & Shaw, Jay & Brou, 2020. "How the design and implementation of centralized waiting lists influence their use and effect on access to healthcare - A realist review," Health Policy, Elsevier, vol. 124(8), pages 787-795.
    12. Carri W. Chan & Vivek F. Farias & Gabriel J. Escobar, 2017. "The Impact of Delays on Service Times in the Intensive Care Unit," Management Science, INFORMS, vol. 63(7), pages 2049-2072, July.
    13. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.
    14. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    15. Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Van Houdt, Benny, 2018. "Inpatient boarding in emergency departments: Impact on patient delays and system capacity," European Journal of Operational Research, Elsevier, vol. 271(3), pages 953-967.
    16. Hideaki Takagi & Yuta Kanai & Kazuo Misue, 2017. "Queueing network model for obstetric patient flow in a hospital," Health Care Management Science, Springer, vol. 20(3), pages 433-451, September.
    17. Legros, Benjamin, 2021. "Routing analyses for call centers with human and automated services," International Journal of Production Economics, Elsevier, vol. 240(C).
    18. Thomas J. Best & Burhaneddin Sandıkçı & Donald D. Eisenstein & David O. Meltzer, 2015. "Managing Hospital Inpatient Bed Capacity Through Partitioning Care into Focused Wings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 157-176, May.
    19. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    20. Zexian Zeng & Zhenghao Fan & Xiaolei Xie & Colleen H. Swartz & Paul DePriest & Jingshan Li, 2020. "A two-level iteration approach for modeling and analysis of rapid response process with multiple deteriorating patients," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 35-71, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.