IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v20y2025i1a4.html
   My bibliography  Save this article

Construcción de portafolios de inversión usando el enfoque de paridad de riesgo

Author

Listed:
  • Carlos Andres Zapata Quimbayo

    (Universidad Externado de Colombia, Colombia)

  • Robinson Alexander Garcia Gaona

    (Universidad Minuto de Dios, Colombia)

Abstract

Este trabajo propone una metodología para aplicar el enfoque de paridad de riesgo (PR) como una alternativa al enfoque tradicional media-varianza (MV) de Markowitz. Para ello, se exploran los fundamentos del enfoque de PR, basado en la noción de contribución al riesgo, donde se busca que cada activo contribuya de manera igualitaria al riesgo total del portafolio, garantizando así una diversificación óptima del portafolio de inversión. Este enfoque se contrasta con el modelo MV, cuyo rendimiento se ve afectado por problemas de concentración y errores en la estimación de los parámetros, que pueden llevar a un riesgo excesivo. Para llevar a cabo su implementación, se construyen dos portafolios diferentes: uno en el mercado de valores estadounidense y otro internacional que incluye este mercado desarrollado y emergentes, como México y Brasil. Además, se utilizan métricas de concentración, como el índice de Herfindahl-Hirschman (HHI), para demostrar que los portafolios basados en PR son más consistentes y requieren menos rebalanceo. Finalmente, se señalan algunas limitaciones del enfoque PR y recomendaciones para su implementación.

Suggested Citation

  • Carlos Andres Zapata Quimbayo & Robinson Alexander Garcia Gaona, 2025. "Construcción de portafolios de inversión usando el enfoque de paridad de riesgo," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 20(1), pages 1-14, Enero - M.
  • Handle: RePEc:imx:journl:v:20:y:2025:i:1:a:4
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/978
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    2. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    3. Giorgio Costa & Roy H. Kwon, 2020. "Generalized risk parity portfolio optimization: an ADMM approach," Journal of Global Optimization, Springer, vol. 78(1), pages 207-238, September.
    4. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    5. Lee, Tae Kyun & Sohn, So Young, 2023. "Alpha-factor integrated risk parity portfolio strategy in global equity fund of funds," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. repec:dau:papers:123456789/4688 is not listed on IDEAS
    7. Benjamin Bruder & Nazar Kostyuchyk & Thierry Roncalli, 2022. "Risk Parity Portfolios with Skewness Risk: An Application to Factor Investing and Alternative Risk Premia," Papers 2202.10721, arXiv.org.
    8. Ana Lorena Jiménez-Preciado & Francisco Venegas-Martínez & Abraham Ramírez-García, 2022. "Stock Portfolio Optimization with Competitive Advantages (MOAT): A Machine Learning Approach," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    9. Michael J. Best & Robert R. Grauer, 1991. "Sensitivity Analysis for Mean-Variance Portfolio Problems," Management Science, INFORMS, vol. 37(8), pages 980-989, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Paç & Mustafa Pınar, 2014. "Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 875-891, October.
    2. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    3. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    4. Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org, revised Aug 2025.
    5. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    6. Burkhardt, Raphael & Ulrych, Urban, 2023. "Sparse and stable international portfolio optimization and currency risk management," Journal of International Money and Finance, Elsevier, vol. 139(C).
    7. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    8. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    9. Xie, Jun & Yang, Chunpeng, 2013. "Shouldn't all eggs be putted in one basket? A portfolio model based on investor sentiment and inertial thinking," Economic Modelling, Elsevier, vol. 35(C), pages 682-688.
    10. Adil Rengim Cetingoz & Olivier Gu'eant, 2023. "Asset and Factor Risk Budgeting: A Balanced Approach," Papers 2312.11132, arXiv.org, revised May 2024.
    11. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    12. Somayyeh Lotfi & Stavros A. Zenios, 2024. "Robust mean-to-CVaR optimization under ambiguity in distributions means and covariance," Review of Managerial Science, Springer, vol. 18(7), pages 2115-2140, July.
    13. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    14. Cesarone, Francesco & Mango, Fabiomassimo & Mottura, Carlo Domenico & Ricci, Jacopo Maria & Tardella, Fabio, 2020. "On the stability of portfolio selection models," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 210-234.
    15. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    16. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    17. Annalisa Fabretti & Stefano Herzel & Mustafa C. Pinar, 2014. "Delegated Portfolio Management under Ambiguity Aversion," CEIS Research Paper 304, Tor Vergata University, CEIS, revised 06 Feb 2014.
    18. Sadegh Miri & Erfan Salavati & Mostafa Shamsi, 2025. "Robust Portfolio Selection Under Model Ambiguity Using Deep Learning," IJFS, MDPI, vol. 13(1), pages 1-18, March.
    19. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.
    20. Martin Arnaiz Iglesias & Adil Rengim Cetingoz & Noufel Frikha, 2024. "Mirror Descent Algorithms for Risk Budgeting Portfolios," Papers 2411.12323, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:20:y:2025:i:1:a:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.