IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v19y2024i4a10.html
   My bibliography  Save this article

Predicción del riesgo crediticio a microfinanciera usando aprendizaje computacional

Author

Listed:
  • Erwis Melchor Pérez

    (Universidad Tecnológica de la Mixteca, México)

  • Moisés Emmanuel Ramírez Guzmán

    (Universidad Tecnológica de la Mixteca, México)

  • Araceli Hernández Jiménez

    (Universidad del Istmo, México)

  • Agustín Santiago Alvarado

    (Universidad Tecnológica de la Mixteca, México)

Abstract

El principal riesgo que enfrentan las Sociedades Cooperativas de Ahorro y Préstamo según la Comisión Nacional Bancaria y de Valores, es el crédito. En este artículo se aplican modelos híbridos de aprendizaje computacional para la predicción del riesgo crediticio de solicitudes de clientes pertenecientes a estas sociedades, además se describe la importancia de la selección de características y la reducción de la dimensionalidad, combinando métodos de aprendizaje no supervisado y supervisado. Los experimentos mostraron que los modelos híbridos en conjunto con técnicas de selección de características superan a los algoritmos de aprendizaje computacional de manera individual utilizando todas las características de los conjuntos de datos analizados. Los conjuntos están desbalanceados, por lo cual se utiliza el método de SMOTE para sobremuestrear la clase minoritaria y equilibrar la cantidad de elementos durante el entrenamiento. Los resultados obtenidos confirman que la combinación de métodos no supervisados y supervisados generan una mejora del 6% en el accuracy en comparación con los modelos del estado del arte y 10% en la reducción del error del tipo II para las bases de datos públicas analizadas.

Suggested Citation

  • Erwis Melchor Pérez & Moisés Emmanuel Ramírez Guzmán & Araceli Hernández Jiménez & Agustín Santiago Alvarado, 2024. "Predicción del riesgo crediticio a microfinanciera usando aprendizaje computacional," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 19(4), pages 1-16, Octubre -.
  • Handle: RePEc:imx:journl:v:19:y:2024:i:4:a:10
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/868
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Instituciones microfinancieras; redes neuronales; árbol de decisión; XGBoost; SMOTE;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:19:y:2024:i:4:a:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.