IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v9y2014i4p170.html

Adjusted Adaptive LASSO in High-dimensional Poisson Regression Model

Author

Listed:
  • Zakariya Algamal
  • Muhammad Lee

Abstract

The LASSO has been widely studied and used in many applications, but it not shown oracle properties. Depending on a consistent initial parameters vector, an adaptive LASSO showed oracle properties, which it is consistent in variable selection and asymptotically normal in coefficient estimation. In Poisson regression model, the usual adaptive LASSO using maximum likelihood coefficient estimators can result in very poor performance when there is multicollinearity. In this study, we proposed an adjusting of the adaptive LASSO to take into account the maximum likelihood standard errors of the coefficient parameters. The performance of the adaptive LASSO was demonstrated through simulation and real data. Our simulation and real data results show that adaptive LASSO has advantage in terms of both prediction and variable selection comparing with other existing adaptive penalized methods when the explanatory variables are highly correlated. Hence we can conclude that adaptive LASSO is a reliable adaptive penalized method in a Poisson regression model.Â

Suggested Citation

  • Zakariya Algamal & Muhammad Lee, 2015. "Adjusted Adaptive LASSO in High-dimensional Poisson Regression Model," Modern Applied Science, Canadian Center of Science and Education, vol. 9(4), pages 170-170, April.
  • Handle: RePEc:ibn:masjnl:v:9:y:2014:i:4:p:170
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/41931/24066
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/41931
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    2. Wei Qian & Yuhong Yang, 2013. "Model selection via standard error adjusted adaptive lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 295-318, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big data analytics: a new perspective," Globalization Institute Working Papers 268, Federal Reserve Bank of Dallas.
    2. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    3. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    6. O-Chia Chuang & Rangan Gupta & Christian Pierdzioch & Buliao Shu, 2024. "Financial Uncertainty and Gold Market Volatility: Evidence from a GARCH-MIDAS Approach with Variable Selection," Working Papers 202441, University of Pretoria, Department of Economics.
    7. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    8. O-Chia Chuang & Chenxu Yang, 2022. "Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model," Energies, MDPI, vol. 15(8), pages 1-14, April.
    9. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    10. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    11. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    12. Katayama, Shota & Imori, Shinpei, 2014. "Lasso penalized model selection criteria for high-dimensional multivariate linear regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 138-150.
    13. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    14. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    15. Ye, Wuyi & Hu, Chenglong & Guo, Ranran, 2024. "Tail risk network of Chinese green-related stocks market," Finance Research Letters, Elsevier, vol. 67(PB).
    16. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    17. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    18. Auer, Benjamin R. & Schuhmacher, Frank & Niemann, Sebastian, 2023. "Cloning mutual fund returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 31-37.
    19. April E. Cho & Jiaying Xiao & Chun Wang & Gongjun Xu, 2024. "Regularized Variational Estimation for Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 347-375, March.
    20. Chen, Jia & Li, Degui & Li, Yu-Ning & Linton, Oliver, 2025. "Estimating time-varying networks for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 249(PC).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:9:y:2014:i:4:p:170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.