IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v12y2018i4p38.html

Negative Binomial Regression Model for Road Crash Severity Prediction

Author

Listed:
  • Hana Naghawi

Abstract

In this paper, the Negative Binominal Regression (NBR) technique was used to develop crash severity prediction model in Jordan. The primary crash data needed were obtained from Jordan Traffic Institute for the year 2014. The collected data included number and severity of crashes. The data were organized into eight crash contributing factors including- age, age and gender, drivers’ faults, environmental factors, crash time, roadway defects and vehicle defects. First of all, descriptive analysis of the crash contributing factors was done to identify and quantify factors affecting crash severity, then the NBR technique using R-statistic software was used for the development of the crash prediction model that linked crash severities to the identified factors. The NBR model results indicated that severe crashes decreased significantly as the age of both male and female drivers increased. They significantly decreased as the environmental conditions improved. In addition, sever crashes were significantly higher during weekdays than weekends and in the morning than in the evening. The results also indicated that sever crashes significantly increased as drivers have faults while driving. In addition, mirror and brake deficits were found to be the only factors among all possible vehicle deficits factors that contributed significantly to severe crashes. Finally, it was found that the results of the NBR model are in agreement with the descriptive analysis of the crash contributing factors.

Suggested Citation

  • Hana Naghawi, 2018. "Negative Binomial Regression Model for Road Crash Severity Prediction," Modern Applied Science, Canadian Center of Science and Education, vol. 12(4), pages 1-38, April.
  • Handle: RePEc:ibn:masjnl:v:12:y:2018:i:4:p:38
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/73852/40924
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/73852
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Spasoje Mićić & Radoje Vujadinović & Goran Amidžić & Milanko Damjanović & Boško Matović, 2022. "Accident Frequency Prediction Model for Flat Rural Roads in Serbia," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
    4. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    5. Dugan, Spencer August & Utne, Ingrid Bouwer, 2025. "Improved identification of maritime risk-influencing factors using AIS data in regression analysis," Reliability Engineering and System Safety, Elsevier, vol. 262(C).
    6. Md Rakibul Islam & Mohamed Abdel-Aty & Zubayer Islam & Shile Zhang, 2022. "Risk-Compensation Trends in Road Safety during COVID-19," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    7. Abay, Kibrom A. & Paleti, Rajesh & Bhat, Chandra R., 2013. "The joint analysis of injury severity of drivers in two-vehicle crashes accommodating seat belt use endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 74-89.
    8. Yuanyuan Zhang & Yuming Zhang, 2018. "Examining the Relationship between Household Vehicle Ownership and Ridesharing Behaviors in the United States," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    9. Mubarak Alrumaidhi & Hesham A. Rakha, 2022. "Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach," Sustainability, MDPI, vol. 14(18), pages 1-12, September.
    10. Sai Chand & Emily Moylan & S. Travis Waller & Vinayak Dixit, 2020. "Analysis of Vehicle Breakdown Frequency: A Case Study of New South Wales, Australia," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    11. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    12. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    13. Yookyung Boo & Youngjin Choi, 2021. "Comparison of Prediction Models for Mortality Related to Injuries from Road Traffic Accidents after Correcting for Undersampling," IJERPH, MDPI, vol. 18(11), pages 1-14, May.
    14. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    15. Muhan Lv & Ningcheng Wang & Shenjun Yao & Jianping Wu & Lei Fang, 2021. "Towards Healthy Aging: Influence of the Built Environment on Elderly Pedestrian Safety at the Micro-Level," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    16. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    18. Dimitrios Nikolaou & Apostolos Ziakopoulos & George Yannis, 2023. "A Review of Surrogate Safety Measures Uses in Historical Crash Investigations," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    19. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    20. Angus Eugene Retallack & Bertram Ostendorf, 2019. "Current Understanding of the Effects of Congestion on Traffic Accidents," IJERPH, MDPI, vol. 16(18), pages 1-13, September.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:12:y:2018:i:4:p:38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.