IDEAS home Printed from https://ideas.repec.org/a/ibn/jggjnl/v12y2022i1p25.html
   My bibliography  Save this article

Use of Ground Penetrating Radar, Hydrogeochemical Testing, and Aquifer Characterization to Establish Shallow Groundwater Supply to the Rehabilitated Ni-les’tun Unit Floodplain: Bandon Marsh, Coquille Estuary, Oregon, USA

Author

Listed:
  • Curt D. Peterson
  • Harry M. Jol
  • David Percy
  • Robert Perkins

Abstract

Fluvial-tidal wetlands in the Ni-les’tun Unit (~200 hectares) of the Bandon Marsh, Coquille Estuary, Oregon, were analyzed for shallow aquifer conditions that could influence surface water-qualities in reconstructed marsh, pond, and discharge/tidal channels. The wetlands were surveyed for pre-historic channel features, depth to groundwater surface (GWS), and subsurface salinity intrusion by ground penetrating radar (GPR) in 50 profiles, totaling 11.1 km in track line distance. Only small flood-discharge/tidal channel features (<10 m width and 1–2 m depth) were recorded in the interior floodplain areas. GWS reflections were observed at 0.5–2.0 depth, where the GPR signal was not obscured by localized salinity intrusion (~0.5 km landward distance) from the adjacent Coquille Estuary channel. Top-sealed piezometers (1.5–2.0 m depth) were installed at 10 sites, where in-situ groundwaters were monitored for temperature (8.5–16.5° C), conductivity (<100–18,800 μS cm-1), and pH (2.5–7.8) on a seasonal basis. Dissolved oxygen was semi-quantitatively measured (ChemSticks) at some sites, and all sites were monitored (fall, winter, summer) for GWS level. Low dissolved oxygen (DO <1 ppm) at four sites was of particular concern for potential discharge into small channels that were to be constructed for juvenile salmonid nursery habitat. The horizontal and vertical asymmetries of conductivity (salinity), used as a conservative groundwater source tracer, and measured GWS elevation trends (gradients) led to a four-part flow model for shallow groundwater supply in the Ni-les’tun floodplain. Freshwater supplied, in part, by hillslope discharge contributes to low pH and low DO water quality in the shallow aquifer. Saline water, supplied by subsurface salinity intrusion and evaporative capillary rise, could introduce salinity toxicity to isolated (stagnant) surface ponds. Following construction of a dense channel network (2009–2011) by the Bandon Marsh National Wildlife Refuge, selected Ni-les’tun channel waters (13 sites) were monitored (2011-2012) for resulting water-quality. The tidally-connected channels generally showed improved water-quality relative to groundwater in some nearby piezometer sites. However, low-quality groundwater supply compromised some channel reaches (DO ~2.0–4.7 ppm) that depended on groundwater recharge from hillslope discharge during either summer or winter conditions.

Suggested Citation

  • Curt D. Peterson & Harry M. Jol & David Percy & Robert Perkins, 2022. "Use of Ground Penetrating Radar, Hydrogeochemical Testing, and Aquifer Characterization to Establish Shallow Groundwater Supply to the Rehabilitated Ni-les’tun Unit Floodplain: Bandon Marsh, Coquill," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 12(1), pages 1-25, June.
  • Handle: RePEc:ibn:jggjnl:v:12:y:2022:i:1:p:25
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jgg/article/download/0/0/42662/44555
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jgg/article/view/0/42662
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    2. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    4. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    6. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    7. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    9. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    10. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    11. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    12. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.
    14. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Michał Burzyński & Christoph Deuster & Frédéric Docquier & Jaime de Melo, 2022. "Climate Change, Inequality, and Human Migration," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1145-1197.
    16. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Davis, Melanie J. & Woo, Isa & De La Cruz, Susan E.W., 2019. "Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    18. Benjamin K. Sovacool & Björn-Ola Linnér & Richard J. T. Klein, 2017. "Climate change adaptation and the Least Developed Countries Fund (LDCF): Qualitative insights from policy implementation in the Asia-Pacific," Climatic Change, Springer, vol. 140(2), pages 209-226, January.
    19. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Theodore G. Shepherd & Emily Boyd & Raphael A. Calel & Sandra C. Chapman & Suraje Dessai & Ioana M. Dima-West & Hayley J. Fowler & Rachel James & Douglas Maraun & Olivia Martius & Catherine A. Senior , 2018. "Storylines: an alternative approach to representing uncertainty in physical aspects of climate change," Climatic Change, Springer, vol. 151(3), pages 555-571, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jggjnl:v:12:y:2022:i:1:p:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.