IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57725-6.html
   My bibliography  Save this article

Surface darkening by abundant and diverse algae on an Antarctic ice cap

Author

Listed:
  • Alex Innes Thomson

    (Scottish Association for Marine Science (SAMS))

  • Andrew Gray

    (University of Edinburgh
    Norwegian Institute for Nature Research—NINA)

  • Claudia Colesie

    (University of Edinburgh)

  • Naomi Thomas

    (Scottish Association for Marine Science (SAMS)
    Argyll)

  • Hannah Moulton

    (Natural Environment Research Council)

  • Peter Convey

    (Natural Environment Research Council
    University of Johannesburg
    Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems)

  • Alison G. Smith

    (University of Cambridge)

  • Peter Fretwell

    (Natural Environment Research Council)

  • Lloyd Peck

    (Natural Environment Research Council)

  • Matthew P. Davey

    (Scottish Association for Marine Science (SAMS))

Abstract

Algal blooms play important roles in physical and biological processes on glacial surfaces. Despite this, their occurrence and impacts within an Antarctic context remain understudied. Here, we present evidence of the large-scale presence, diversity and bioalbedo effects of algal blooms on Antarctic ice cap systems based on fieldwork conducted on Robert Island (South Shetland Islands, Antarctica). Algal blooms are observed covering up to 2.7 km2 (~20%) of the measured area of the Robert Island ice cap, with cell densities of up to 1.4 × 106 cells ml−1. Spectral characterisation reveal that these blooms increase melting of the ice cap surface, contributing up to 2.4% of total melt under the observed conditions. Blooms are composed of typical cryoflora taxa, dominated by co-occurring Chlorophyceae, Trebouxiophyceae, and Ancylonema. However, morphological variation and genetic diversity in Ancylonema highlight the influence of regional endemism and point to a large and under-characterised diversity in Antarctic cryoflora.

Suggested Citation

  • Alex Innes Thomson & Andrew Gray & Claudia Colesie & Naomi Thomas & Hannah Moulton & Peter Convey & Alison G. Smith & Peter Fretwell & Lloyd Peck & Matthew P. Davey, 2025. "Surface darkening by abundant and diverse algae on an Antarctic ice cap," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57725-6
    DOI: 10.1038/s41467-025-57725-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57725-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57725-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jasmine R. Lee & Ben Raymond & Thomas J. Bracegirdle & Iadine Chadès & Richard A. Fuller & Justine D. Shaw & Aleks Terauds, 2017. "Climate change drives expansion of Antarctic ice-free habitat," Nature, Nature, vol. 547(7661), pages 49-54, July.
    2. Takahiro Segawa & Ryo Matsuzaki & Nozomu Takeuchi & Ayumi Akiyoshi & Francisco Navarro & Shin Sugiyama & Takahiro Yonezawa & Hiroshi Mori, 2018. "Bipolar dispersal of red-snow algae," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Andrew Gray & Monika Krolikowski & Peter Fretwell & Peter Convey & Lloyd S. Peck & Monika Mendelova & Alison G. Smith & Matthew P. Davey, 2020. "Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    5. Jenine McCutcheon & Stefanie Lutz & Christopher Williamson & Joseph M. Cook & Andrew J. Tedstone & Aubry Vanderstraeten & Sasha Wilson & Anthony Stockdale & Steeve Bonneville & Alexandre M. Anesio & M, 2021. "Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pertierra, L.R. & Santos-Martin, F. & Hughes, K.A. & Avila, C. & Caceres, J.O. & De Filippo, D. & Gonzalez, S. & Grant, S.M. & Lynch, H. & Marina-Montes, C. & Quesada, A. & Tejedo, P. & Tin, T. & Bena, 2021. "Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities," Ecosystem Services, Elsevier, vol. 49(C).
    2. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    3. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    5. N. Gourmelen & L. Jakob & P. R. Holland & P. Dutrieux & D. Goldberg & S. Bevan & A. Luckman & G. Malczyk, 2025. "The influence of subglacial lake discharge on Thwaites Glacier ice-shelf melting and grounding-line retreat," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    8. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    9. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    11. Raúl R. Cordero & Edgardo Sepúlveda & Sarah Feron & Alessandro Damiani & Francisco Fernandoy & Steven Neshyba & Penny M. Rowe & Valentina Asencio & Jorge Carrasco & Juan A. Alfonso & Pedro Llanillo & , 2022. "Black carbon footprint of human presence in Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    13. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    14. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    15. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.
    17. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Luke P. Jackson & Katarina Juselius & Andrew B. Martinez & Felix Pretis, 2025. "Modelling the dependence between recent changes in polar ice sheets: Implications for global sea-level projections," Working Papers 2025-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    19. Michał Burzyński & Christoph Deuster & Frédéric Docquier & Jaime de Melo, 2022. "Climate Change, Inequality, and Human Migration," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1145-1197.
    20. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57725-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.