IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v10y2021i4p119.html
   My bibliography  Save this article

Edgeworth Expansion for the Whittle Maximum Likelihood Estimator of Linear Regression Processes with Long Memory Residuals

Author

Listed:
  • Mosisa Aga

Abstract

We establish an Edgeworth expansion for the distribution of the Whittle maximum likelihood estimator of the parameter of a time series generated by a linear regression model with Gaussian, stationary, and long-memory residuals. This is done by imposing an extra condition on coefficients of the regression model in addition to the standard conditions imposed on the the spectral density function and the parameter values and making use of the results of Andrews et al. (2005), who provided an Edgeworth expansion for the residual component.

Suggested Citation

  • Mosisa Aga, 2021. "Edgeworth Expansion for the Whittle Maximum Likelihood Estimator of Linear Regression Processes with Long Memory Residuals," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 119-119, July.
  • Handle: RePEc:ibn:ijspjl:v:10:y:2021:i:4:p:119
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/45494/48384
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/45494
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Lieberman, Offer, 2005. "Valid Edgeworth Expansions For The Whittle Maximum Likelihood Estimator For Stationary Long-Memory Gaussian Time Series," Econometric Theory, Cambridge University Press, vol. 21(4), pages 710-734, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriakopoulou, Dimitra & Demos, Antonis, 2010. "Edgeworth and Moment Approximations: The Case of MM and QML Estimators for the MA (1) Models," MPRA Paper 122393, University Library of Munich, Germany.
    2. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    3. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    4. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    5. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    6. La Vecchia, Davide & Ronchetti, Elvezio, 2019. "Saddlepoint approximations for short and long memory time series: A frequency domain approach," Journal of Econometrics, Elsevier, vol. 213(2), pages 578-592.
    7. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    8. Arvanitis Stelios & Demos Antonis, 2014. "Valid Locally Uniform Edgeworth Expansions for a Class of Weakly Dependent Processes or Sequences of Smooth Transformations," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 183-235, July.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:10:y:2021:i:4:p:119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.