IDEAS home Printed from https://ideas.repec.org/a/ibn/eerjnl/v4y2014i1p15.html
   My bibliography  Save this article

Investigation of Air and Air-Steam Gasification of High Carbon Wood Ash in a Fluidized Bed Reactor

Author

Listed:
  • Adrian James
  • Steve Helle
  • Ronald Thring
  • P. Rutherford
  • Mohammad Masnadi

Abstract

The pulp and paper industry in an effort to offset fossil fuel demand uses woody biomass combustion as a renewable energy source to meet their ever-growing energy demands. Boiler combustion systems are often used to provide this energy. However, large amounts of high carbon ash are produced from some boilers resulting in technological, economic and environmental challenge. This high carbon ash is considered to be of very little economic and environmental value and is typically sent to landfills. Reuse of this ash in some boilers requires upgrading and is not economically feasible. Therefore, this study investigates the feasibility of gasifying high carbon wood ash of particle sizes smaller than 3 mm, while comparing its behaviour to that of unburned wood. Gasification was conducted in a stainless steel bubbling fluidized bed reactor 3-inch diameter and height of approximately 800 mm using air and air-steam as gasifying agents. Parameters of interest included equivalence ratio (ER), gas calorific value, carbon conversion efficiency and produced gas yield. High carbon ash was successfully gasified at low temperatures and atmospheric pressure and showed similar trends as woody biomass. The higher heating value (HHV) and carbon conversion efficiency increased with increasing temperature. The H2/CO molar ratio was higher for the air-steam process. Future areas of research could include investigating the viability of producing a gas of even higher heating value.

Suggested Citation

  • Adrian James & Steve Helle & Ronald Thring & P. Rutherford & Mohammad Masnadi, 2014. "Investigation of Air and Air-Steam Gasification of High Carbon Wood Ash in a Fluidized Bed Reactor," Energy and Environment Research, Canadian Center of Science and Education, vol. 4(1), pages 1-15, June.
  • Handle: RePEc:ibn:eerjnl:v:4:y:2014:i:1:p:15
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/eer/article/download/31510/19208
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/eer/article/view/31510
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    2. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    3. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    4. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    5. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    6. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    7. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    8. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Liu, Haolin & Ye, Chao & Xu, Yousheng & Wang, Qisong, 2022. "Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar," Energy, Elsevier, vol. 247(C).
    11. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    12. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    13. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    15. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).
    16. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    17. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    18. García-Velásquez, Carlos A. & Cardona, Carlos A., 2019. "Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment," Energy, Elsevier, vol. 172(C), pages 232-242.
    19. Zheng, Ji-Lu & Zhu, Ya-Hong & Zhu, Ming-Qiang & Wu, Hai-Tang & Sun, Run-Cang, 2018. "Bio-oil gasification using air - Steam as gasifying agents in an entrained flow gasifier," Energy, Elsevier, vol. 142(C), pages 426-435.
    20. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:eerjnl:v:4:y:2014:i:1:p:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.