IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8716979.html
   My bibliography  Save this article

Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN

Author

Listed:
  • Xihui Chen
  • Liping Peng
  • Gang Cheng
  • Chengming Luo

Abstract

Planetary gear is the key part of the transmission system for large complex electromechanical equipment, and in general, a series of degradation states are undergone and evolved into a local fatal fault in its full life cycle. So it is of great significance to recognize the degradation state of planetary gear for the purpose of maintenance repair, predicting development trend, and avoiding sudden fault. This paper proposed a degradation state recognition method of planetary gear based on multiscale information dimension of singular spectrum decomposition (SSD) and convolutional neural network (CNN). SSD can automatically realize the embedding dimension selection and component grouping segmentation, and the original vibration signal being nonlinear and nonstationary can be decomposed into a series of singular spectrum decomposition components (SSDCs), adaptively. Then, the multiscale information dimension which combines multiscale analysis and fractal information dimension is proposed for quantifying and extracting the feature information contained in each SSDC. Finally, CNN is used to achieve the effective recognition of the degradation state of planetary gear. The experimental results show that the proposed method can accurately recognize the degradation state of planetary gear, and the overall recognition rate is up to 97.2%, of which the recognition rate of normal planetary gear reaches 100%.

Suggested Citation

  • Xihui Chen & Liping Peng & Gang Cheng & Chengming Luo, 2019. "Research on Degradation State Recognition of Planetary Gear Based on Multiscale Information Dimension of SSD and CNN," Complexity, Hindawi, vol. 2019, pages 1-12, March.
  • Handle: RePEc:hin:complx:8716979
    DOI: 10.1155/2019/8716979
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8716979.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8716979.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8716979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Ma & Hua Su & Wan-lin Zhao & Bin Liu, 2018. "Predicting the Remaining Useful Life of an Aircraft Engine Using a Stacked Sparse Autoencoder with Multilayer Self-Learning," Complexity, Hindawi, vol. 2018, pages 1-13, July.
    2. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    3. Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
    4. Hongmei Liu & Jiayao Jing & Jian Ma, 2018. "Fault Diagnosis of Electromechanical Actuator Based on VMD Multifractal Detrended Fluctuation Analysis and PNN," Complexity, Hindawi, vol. 2018, pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongbo Li & Xianzhi Wang & Shubin Si & Xiaoqiang Du, 2019. "A New Intelligent Fault Diagnosis Method of Rotating Machinery under Varying-Speed Conditions Using Infrared Thermography," Complexity, Hindawi, vol. 2019, pages 1-12, August.
    2. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2019. "Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation," Energies, MDPI, vol. 12(18), pages 1-19, September.
    3. Sepehr Moalem & Roya M. Ahari & Ghazanfar Shahgholian & Majid Moazzami & Seyed Mohammad Kazemi, 2022. "Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    5. Bulent Haznedar & Huseyin Cagan Kilinc & Furkan Ozkan & Adem Yurtsever, 2023. "Streamflow forecasting using a hybrid LSTM-PSO approach: the case of Seyhan Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 681-701, May.
    6. Kanitta Yarak & Apichon Witayangkurn & Kunnaree Kritiyutanont & Chomchanok Arunplod & Ryosuke Shibasaki, 2021. "Oil Palm Tree Detection and Health Classification on High-Resolution Imagery Using Deep Learning," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    7. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    8. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    10. Xueliang Zhang & Jiawei Liu & Chi Zhang & Dongyan Shao & Zhiqiang Cai, 2023. "Innovation Performance Prediction of University Student Teams Based on Bayesian Networks," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    11. Stanislaw Osowski & Robert Szmurlo & Krzysztof Siwek & Tomasz Ciechulski, 2022. "Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    12. Avraam Tsantekidis & Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Using Deep Learning for price prediction by exploiting stationary limit order book features," Papers 1810.09965, arXiv.org.
    13. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    14. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Fei Liao & Liangli Ma & Jingjing Pei & Linshan Tan, 2019. "Combined Self-Attention Mechanism for Chinese Named Entity Recognition in Military," Future Internet, MDPI, vol. 11(8), pages 1-11, August.
    16. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    17. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    18. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    19. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Bin Wang & Enhui Wang & Zikun Zhu & Yangyang Sun & Yaodong Tao & Wei Wang, 2021. "An explainable sentiment prediction model based on the portraits of users sharing representative opinions in social sensors," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8716979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.