IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6946189.html
   My bibliography  Save this article

Community Detection with Self-Adapting Switching Based on Affinity

Author

Listed:
  • Ning-Ning Wang
  • Zhen Jin
  • Xiao-Long Peng

Abstract

Community structures in complex networks play an important role in researching network function. Although there are various algorithms based on affinity or similarity, their drawbacks are obvious. They perform well in strong communities, but perform poor in weak communities. Experiments show that sometimes, community detection algorithms based on a single affinity do not work well, especially for weak communities. So we design a self-adapting switching (SAS) algorithm, where weak communities are detected by combination of two affinities. Compared with some state-of-the-art algorithms, the algorithm has a competitive accuracy and its time complexity is near linear. Our algorithm also provides a new framework of combination algorithm for community detection. Some extensive computational simulations on both artificial and real-world networks confirm the potential capability of our algorithm.

Suggested Citation

  • Ning-Ning Wang & Zhen Jin & Xiao-Long Peng, 2019. "Community Detection with Self-Adapting Switching Based on Affinity," Complexity, Hindawi, vol. 2019, pages 1-16, November.
  • Handle: RePEc:hin:complx:6946189
    DOI: 10.1155/2019/6946189
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6946189.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6946189.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6946189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    4. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    5. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Wang, Tao & Yin, Liyan & Wang, Xiaoxia, 2018. "A community detection method based on local similarity and degree clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1344-1354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning-Ning & Jin, Zhen & Wang, Ya-Jing & Di, Zeng-Ru, 2020. "Epidemics spreading in periodic double layer networks with dwell time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Mohammad Ghaderi, 2020. "Public Health Interventions in the Face of Pandemics: Network Structure, Social Distancing, and Heterogeneity," Working Papers 1193, Barcelona School of Economics.
    4. Ghaderi, Mohammad, 2022. "Public health interventions in the face of pandemics: Network structure, social distancing, and heterogeneity," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1016-1031.
    5. Jianjun Cheng & Xing Su & Haijuan Yang & Longjie Li & Jingming Zhang & Shiyan Zhao & Xiaoyun Chen, 2019. "Neighbor Similarity Based Agglomerative Method for Community Detection in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, May.
    6. Mohammad Ghaderi, 2020. "Public health interventions in the face of pandemics: network structure, social distancing, and heterogeneity," Economics Working Papers 1732, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Aghaalizadeh, Saeid & Afshord, Saeid Taghavi & Bouyer, Asgarali & Anari, Babak, 2021. "A three-stage algorithm for local community detection based on the high node importance ranking in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    8. Johnston, Josh & Andersen, Tim, 2022. "Random processes with high variance produce scale free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Yi Zhang & Mengjia Wu & Guangquan Zhang & Jie Lu, 2023. "Stepping beyond your comfort zone: Diffusion‐based network analytics for knowledge trajectory recommendation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 775-790, July.
    10. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    11. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    12. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    13. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    14. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    16. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    17. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    19. Baek, Seung Ki & Kim, Tae Young & Kim, Beom Jun, 2008. "Testing a priority-based queue model with Linux command histories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3660-3668.
    20. Freddy Hernán Cepeda López, 2008. "La topología de redes como herramienta de seguimiento en el Sistema de Pagos de Alto Valor en Colombia," Borradores de Economia 513, Banco de la Republica de Colombia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6946189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.