IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5928235.html
   My bibliography  Save this article

Complexity Analysis of Prefabrication Contractors’ Dynamic Price Competition in Mega Projects with Different Competition Strategies

Author

Listed:
  • Jianbo Zhu
  • Qianqian Shi
  • Peng Wu
  • Zhaohan Sheng
  • Xiangyu Wang

Abstract

This paper considers a repeated duopoly game of prefabrication contractors in mega infrastructure projects and assumes the contractors exhibit bounded rationality. Based on the theory of bifurcation of dynamical systems, a dynamic price competition model is constructed considering different competition strategies. Accordingly, the stability of the equilibrium point of the system is discussed considering different initial market capacities, and numerical simulation is performed. The results show the system has a unique equilibrium solution when initial capacity is high and the parameters meet certain conditions. The contractors’ price adjustment strategy has an important influence on system stability. However, an overly aggressive competition strategy is not conducive to system stability. Moreover, the system is sensitive to initial parameter values.

Suggested Citation

  • Jianbo Zhu & Qianqian Shi & Peng Wu & Zhaohan Sheng & Xiangyu Wang, 2018. "Complexity Analysis of Prefabrication Contractors’ Dynamic Price Competition in Mega Projects with Different Competition Strategies," Complexity, Hindawi, vol. 2018, pages 1-9, September.
  • Handle: RePEc:hin:complx:5928235
    DOI: 10.1155/2018/5928235
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/5928235.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/5928235.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/5928235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fanti, Luciano & Gori, Luca & Mammana, Cristiana & Michetti, Elisabetta, 2013. "The dynamics of a Bertrand duopoly with differentiated products: Synchronization, intermittency and global dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 73-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. P. Urgilés & J. Claver & M. A. Sebastián, 2019. "Analysis of the Earned Value Management and Earned Schedule Techniques in Complex Hydroelectric Power Production Projects: Cost and Time Forecast," Complexity, Hindawi, vol. 2019, pages 1-11, April.
    3. Yan Cao & Towhid Pourrostam & Yousef Zandi & Nebojša Denić & Bogdan Ćirković & Alireza Sadighi Agdas & Abdellatif Selmi & Vuk Vujović & Kittisak Jermsittiparsert & Momir Milic, 2021. "RETRACTED ARTICLE: Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17349-17373, December.
    4. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    5. Qingfeng Meng & Zhen Li & Jianguo Du & Huimin Liu & Xiang Ding, 2019. "Negotiation for Time Optimization in Construction Projects with Competitive and Social Welfare Preferences," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    6. Zhenfeng Liu & Ya Xiao & Jian Feng, 2021. "Manufacturer’s Sharing Servitization Transformation and Product Pricing Strategy," Sustainability, MDPI, vol. 13(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    2. Yi, Qi Guo & Zeng, Xiang Jin, 2015. "Complex dynamics and chaos control of duopoly Bertrand model in Chinese air-conditioning market," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 231-237.
    3. Fanti, Luciano & Gori, Luca & Mammana, Cristiana & Michetti, Elisabetta, 2014. "Local and global dynamics in a duopoly with price competition and market share delegation," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 253-270.
    4. Brianzoni, Serena & Campisi, Giovanni & Colasante, Annarita, 2022. "Nonlinear banking duopoly model with capital regulation: The case of Italy," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Zhang, Xinli & Sun, Deshan & Ma, Sijia & Zhang, Shuning, 2020. "The dynamics of a quantum Bertrand duopoly with differentiated products and heterogeneous expectations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    6. Askar, S.S. & Alshamrani, Ahmad M. & Alnowibet, K., 2015. "Dynamic Cournot duopoly games with nonlinear demand function," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 427-437.
    7. Li, Hui & He, Ruichun & Zhou, Wei, 2022. "Dynamic behaviors in a Cournot duopoly model with knowledge spillover effect based on constant conjectural variation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 305-323.
    8. Li, Hui & Zhou, Wei & Elsadany, A. A & Chu, Tong, 2021. "Stability, multi-stability and instability in Cournot duopoly game with knowledge spillover effects and relative profit maximization," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Mikhail Anufriev & Davide Radi & Fabio Tramontana, 2018. "Some reflections on past and future of nonlinear dynamics in economics and finance," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 41(2), pages 91-118, November.
    10. Ciprian Rusescu & Mihai Daniel - Roman, 2021. "Dynamic Behaviour In A Bertrand Model With Bounded Rational Players," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 45-55, June.
    11. Xiaoliang Li & Bo Li, 2023. "A Bertrand duopoly game with differentiated products reconsidered," Papers 2301.01007, arXiv.org.
    12. Puu, Tonu & Tramontana, Fabio, 2019. "Can Bertrand and Cournot oligopolies be combined?," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 97-107.
    13. Liu, Yuxia & Zhou, Wei & Wang, Qian, 2022. "Global dynamics of an oligopoly competition model with isoelastic demand and strategic delegation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Brianzoni, Serena & Gori, Luca & Michetti, Elisabetta, 2015. "Dynamics of a Bertrand duopoly with differentiated products and nonlinear costs: Analysis, comparisons and new evidences," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 191-203.
    15. Liu, Cui & He, Rui-chun & Zhou, Wei & Li, Hui, 2021. "Dynamic analysis of airline bidding game based on nonlinear cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Ahmed, E. & Elsadany, A.A. & Puu, Tonu, 2015. "On Bertrand duopoly game with differentiated goods," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 169-179.
    17. A. A. Elsadany & A. M. Awad, 2019. "Dynamics and chaos control of a duopolistic Bertrand competitions under environmental taxes," Annals of Operations Research, Springer, vol. 274(1), pages 211-240, March.
    18. Zhou, Jie & Zhou, Wei & Chu, Tong & Chang, Ying-xiang & Huang, Meng-jia, 2019. "Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R&D spillover and product differentiation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 358-378.
    19. A. A. Elsadany & A. M. Awad, 2016. "Dynamical analysis and chaos control in a heterogeneous Kopel duopoly game," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(4), pages 617-639, December.
    20. Luca Gori & Nicolò Pecora & Mauro Sodini, 2017. "Market share delegation in a nonlinear duopoly with quantity competition: the role of dynamic entry barriers," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 905-931, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5928235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.