IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3728621.html
   My bibliography  Save this article

A Novel Antifragility Measure Based on Satisfaction and Its Application to Random and Biological Boolean Networks

Author

Listed:
  • Omar K. Pineda
  • Hyobin Kim
  • Carlos Gershenson

Abstract

Antifragility is a property that enhances the capability of a system in response to external perturbations. Although the concept has been applied in many areas, a practical measure of antifragility has not been developed yet. Here we propose a simply calculable measure of antifragility, based on the change of “satisfaction” before and after adding perturbations, and apply it to random Boolean networks (RBNs). Using the measure, we found that ordered RBNs are the most antifragile. Also, we demonstrated that seven biological systems are antifragile. Our measure and results can be used in various applications of Boolean networks (BNs) including creating antifragile engineering systems, identifying the genetic mechanism of antifragile biological systems, and developing new treatment strategies for various diseases.

Suggested Citation

  • Omar K. Pineda & Hyobin Kim & Carlos Gershenson, 2019. "A Novel Antifragility Measure Based on Satisfaction and Its Application to Random and Biological Boolean Networks," Complexity, Hindawi, vol. 2019, pages 1-10, May.
  • Handle: RePEc:hin:complx:3728621
    DOI: 10.1155/2019/3728621
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3728621.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3728621.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3728621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terje Aven, 2015. "The Concept of Antifragility and its Implications for the Practice of Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 476-483, March.
    2. Marco Villani & Luca La Rocca & Stuart Alan Kauffman & Roberto Serra, 2018. "Dynamical Criticality in Gene Regulatory Networks," Complexity, Hindawi, vol. 2018, pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohan Li & Yuwei Zhang & Ali Sorourkhah & S. A. Edalatpanah, 2024. "Introducing Antifragility Analysis Algorithm for Assessing Digitalization Strategies of the Agricultural Economy in the Small Farming Section," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12191-12215, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordaan, D. & Kirsten, J., 2018. "Measuring the Fragility of Agribusiness Chains: A Case Study of the South African Lamb Chain," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277501, International Association of Agricultural Economists.
    2. Garcia-Perez, Alexeis & Cegarra-Navarro, Juan Gabriel & Sallos, Mark Paul & Martinez-Caro, Eva & Chinnaswamy, Anitha, 2023. "Resilience in healthcare systems: Cyber security and digital transformation," Technovation, Elsevier, vol. 121(C).
    3. Xu, Kunliang & Shao, Yanmin & Hu, Yiwen, 2025. "Responding to perceived environmental policy uncertainty with green technological innovation engagement: Evidence from a text-based measure," Energy Economics, Elsevier, vol. 142(C).
    4. Banica, Alexandru & Corodescu-Rosca, Ema & Kourtit, Karima & Nijkamp, Peter, 2025. "Actionable policy responses to disaster threats – A comparative study on resilience and sustainability in global cities," Land Use Policy, Elsevier, vol. 152(C).
    5. Terje Aven, 2019. "The Call for a Shift from Risk to Resilience: What Does it Mean?," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1196-1203, June.
    6. Darío Alatorre & Carlos Gershenson & José L Mateos, 2023. "Stocks and cryptocurrencies: Antifragile or robust? A novel antifragility measure of the stock and cryptocurrency markets," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-21, March.
    7. Xiaohan Li & Yuwei Zhang & Ali Sorourkhah & S. A. Edalatpanah, 2024. "Introducing Antifragility Analysis Algorithm for Assessing Digitalization Strategies of the Agricultural Economy in the Small Farming Section," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12191-12215, September.
    8. Mahdi Moudi & Zhongwen Xu & Liming Yao & He Yuan, 2020. "Dynamic Optimization Model for Improving Urban Water Supply System Fragility with Uncertain Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1465-1477, March.
    9. Gianluca D’Addese & Martina Casari & Roberto Serra & Marco Villani, 2021. "A Fast and Effective Method to Identify Relevant Sets of Variables in Complex Systems," Mathematics, MDPI, vol. 9(9), pages 1-27, April.
    10. Xu, Kunliang & Shao, Yanmin & Hu, Yiwen, 2025. "Antifragility or threat-rigidity: the impact of board environmental policy uncertainty perception on corporate exploratory and exploitative green technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 216(C).
    11. Yanwei Li & Araz Taeihagh & Martin de Jong & Andreas Klinke, 2021. "Toward a Commonly Shared Public Policy Perspective for Analyzing Risk Coping Strategies," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 519-532, March.
    12. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Aven, Terje, 2019. "The cautionary principle in risk management: Foundation and practical use," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3728621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.