IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2064-d118340.html
   My bibliography  Save this article

Smart City Platform Development for an Automated Waste Collection System

Author

Listed:
  • Cicerone Laurentiu Popa

    (IMST Faculty, MSP Department, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • George Carutasu

    (Computer Science for Business Management Faculty, ISM Department, Romanian-American University, 012101 Bucharest, Romania)

  • Costel Emil Cotet

    (IMST Faculty, MSP Department, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Nicoleta Luminita Carutasu

    (IMST Faculty, MSP Department, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Tiberiu Dobrescu

    (IMST Faculty, MSP Department, University Politehnica of Bucharest, 060042 Bucharest, Romania)

Abstract

Nowadays, governments and companies are looking for solutions to increase the collection level of various waste types by using new technologies and devices such as smart sensors, Internet of Things (IoT), cloud platforms etc. In order to fulfil this need, this paper presents solutions provided by a research project involving the design, development and implementation of fully automated waste collection systems with an increased usage degree, productivity and storage capacity. The paper will focus on the main results of this research project in turning the automated waste collection system into a smart system so that it can be easily integrated in any smart city infrastructure. For this purpose, the Internet of Things platform for the automated waste collection system provided by the project will allow real time monitoring and communication with central systems. Details about each module are sent to the central systems: various modules’ statuses (working, blocked, needs repairs or maintenance etc.); equipment status; storage systems status (allowing full reports for all waste types); the amount of waste for each module, allowing optimal discharging; route optimization for waste discharging etc. To do that, we describe here an IoT cloud solution integrating device connection, data processing, analytics and management.

Suggested Citation

  • Cicerone Laurentiu Popa & George Carutasu & Costel Emil Cotet & Nicoleta Luminita Carutasu & Tiberiu Dobrescu, 2017. "Smart City Platform Development for an Automated Waste Collection System," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2064-:d:118340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sotiris Zygiaris, 2013. "Smart City Reference Model: Assisting Planners to Conceptualize the Building of Smart City Innovation Ecosystems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 217-231, June.
    2. Ion LUNGU & Adela BÂRA & George CĂRUTASU & Alexandru PÎRJAN, & Simona-Vasilica OPREA, 2016. "Prediction Intelligent System In The Field Of Renewable Energies Through Neural Networks," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 85-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasja Roblek & Maja Meško & Mirjana Pejić Bach & Oshane Thorpe & Polona Šprajc, 2020. "The Interaction between Internet, Sustainable Development, and Emergence of Society 5.0," Data, MDPI, vol. 5(3), pages 1-27, September.
    2. Costel Emil Cotet & Gicu Calin Deac & Crina Narcisa Deac & Cicerone Laurentiu Popa, 2020. "An Innovative Industry 4.0 Cloud Data Transfer Method for an Automated Waste Collection System," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    3. Secinaro, Silvana & Brescia, Valerio & Lanzalonga, Federico & Santoro, Gabriele, 2022. "Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development," Journal of Business Research, Elsevier, vol. 149(C), pages 296-313.
    4. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    5. Monica Leba & Andreea Ionica & Raluca Dovleac & Remus Dobra, 2018. "Waste Management System for Batteries," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    6. Hasmawaty & Yulis Tyagita Utami & Darius Antoni, 2022. "Building Green Smart City Capabilities in South Sumatra, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    7. Hilal Shams & Altaf Hossain Molla & Mohd Nizam Ab Rahman & Hawa Hishamuddin & Zambri Harun & Nallapaneni Manoj Kumar, 2023. "Exploring Industry-Specific Research Themes on E-Waste: A Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    8. Shaik Vaseem Akram & Rajesh Singh & Anita Gehlot & Mamoon Rashid & Ahmed Saeed AlGhamdi & Sultan S. Alshamrani & Deepak Prashar, 2021. "Role of Wireless Aided Technologies in the Solid Waste Management: A Comprehensive Review," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    9. Yelena Popova & Ilze Sproge, 2021. "Decision-Making within Smart City: Waste Sorting," Sustainability, MDPI, vol. 13(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biancardi, Marta & Di Bari, Antonio & Villani, Giovanni, 2021. "R&D investment decision on smart cities: Energy sustainability and opportunity," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Fukuda, Kayano, 2020. "Science, technology and innovation ecosystem transformation toward society 5.0," International Journal of Production Economics, Elsevier, vol. 220(C).
    3. Hakim ALASGAROV, 2022. "Azerbaijan s smart cities villages concepts for Karabagh region. How real and doable to lead to success," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, vol. 10, pages 215-225, November.
    4. Cristian Mihai BARCA & Claudiu Dan BARCA, 2017. "Distributed algorithm to train neural networks using the Map Reduce paradigm," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 8(1), pages 3-11, July.
    5. Małgorzata Baran & Monika Kłos & Monika Chodorek & Karolina Marchlewska-Patyk, 2022. "The Resilient Smart City Model–Proposal for Polish Cities," Energies, MDPI, vol. 15(5), pages 1-23, March.
    6. Jorge Lanza & Luis Sánchez & Verónica Gutiérrez & José Antonio Galache & Juan Ramón Santana & Pablo Sotres & Luis Muñoz, 2016. "Smart City Services over a Future Internet Platform Based on Internet of Things and Cloud: The Smart Parking Case," Energies, MDPI, vol. 9(9), pages 1-14, September.
    7. Barrutia, Jose M. & Echebarria, Carmen & Aguado-Moralejo, Itziar & Apaolaza-Ibáñez, Vanessa & Hartmann, Patrick, 2022. "Leading smart city projects: Government dynamic capabilities and public value creation," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    8. Anna D’Auria & Marco Tregua & Manuel Carlos Vallejo-Martos, 2018. "Modern Conceptions of Cities as Smart and Sustainable and Their Commonalities," Sustainability, MDPI, vol. 10(8), pages 1-18, July.
    9. Chunpei Lin & Guanxi Zhao & Chuanpeng Yu & Yenchun Jim Wu, 2019. "Smart City Development and Residents’ Well-Being," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    10. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    11. Csukás Máté Szilárd & Roland Z. Szabó, 2018. "Factors Hindering Smart City Developments in Medium-Sized Cities," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 14(01), pages 3-14.
    12. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Nicos Komninos & Christina Kakderi & Luca Mora & Anastasia Panori & Elena Sefertzi, 2022. "Towards High Impact Smart Cities: a Universal Architecture Based on Connected Intelligence Spaces," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1169-1197, June.
    14. Negar Noori & Thomas Hoppe & Martin de Jong, 2020. "Classifying Pathways for Smart City Development: Comparing Design, Governance and Implementation in Amsterdam, Barcelona, Dubai, and Abu Dhabi," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    15. Raimundo Díaz-Díaz & Luis Muñoz & Daniel Pérez-González, 2017. "The Business Model Evaluation Tool for Smart Cities: Application to SmartSantander Use Cases," Energies, MDPI, vol. 10(3), pages 1-30, February.
    16. Sabiölla Hosseini & Leonhard Frank & Gilbert Fridgen & Sebastian Heger, 2018. "Do Not Forget About Smart Towns," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(3), pages 243-257, June.
    17. Antonio Di Bari & Domenico Santoro & Maria Antonia Tarrazon-Rodon & Giovanni Villani, 2024. "The impact of polarity score on real option valuation for multistage projects," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 57-76, February.
    18. Ardito, Lorenzo & Ferraris, Alberto & Messeni Petruzzelli, Antonio & Bresciani, Stefano & Del Giudice, Manlio, 2019. "The role of universities in the knowledge management of smart city projects," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 312-321.
    19. George C?ru?a?u & Alexandru Pîrjan, 2016. "A Seasonal And Monthly Approach For Predicting The Delivered Energy Quantity In A Photovoltaic Power Plant In Romania," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 1(44), pages 198-207.
    20. H. Patricia McKenna, 2019. "Innovating Metrics for Smarter, Responsive Cities," Data, MDPI, vol. 4(1), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2064-:d:118340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.