IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2026-d117766.html
   My bibliography  Save this article

Energy and Economic Performance of Plant-Shaded Building Façade in Hot Arid Climate

Author

Listed:
  • Mahmoud Haggag

    (Architectural Engineering Department, College of Engineering, UAE University, PO Box 15551, Al-Ain, UAE)

  • Ahmed Hassan

    (Architectural Engineering Department, College of Engineering, UAE University, PO Box 15551, Al-Ain, UAE)

  • Ghulam Qadir

    (Architectural Engineering Department, College of Engineering, UAE University, PO Box 15551, Al-Ain, UAE)

Abstract

The use of vegetated walls and intensive plantation around buildings has increased in popularity in hot and arid climates, such as those in the United Arab Emirates (UAE). This is due to its contribution towards reducing the heat gain and increasing the occupants’ comfort levels in spaces. This paper examines the introduction of plant-shaded walls as passive technique to reduce heat gain in indoor spaces as a strategy to lower cooling demand in hot arid climate of Al-Ain city. Experimental work was carried out to analyze the impact of using plantation for solar control of residential building façades in extreme summer. External and internal wall surface and ambient temperatures were measured for plant-shaded and bare walls. The study concluded that shading effect of the intensive plantation can reduce peak time indoor air temperature by 12 °C and reduce the internal heat gain by 2 kWh daily in the tested space. The economic analysis reveals a payback period of 10 years considering local energy tariff excluding environmental savings.

Suggested Citation

  • Mahmoud Haggag & Ahmed Hassan & Ghulam Qadir, 2017. "Energy and Economic Performance of Plant-Shaded Building Façade in Hot Arid Climate," Sustainability, MDPI, vol. 9(11), pages 1-11, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2026-:d:117766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandit, Ram & Laband, David N., 2010. "Energy savings from tree shade," Ecological Economics, Elsevier, vol. 69(6), pages 1324-1329, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    2. Ljubomir Jankovic, 2018. "Designing Resilience of the Built Environment to Extreme Weather Events," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    3. Hyun-Kil Jo & Hye-Mi Park & Jin-Young Kim, 2019. "Carbon Offset Service and Design Guideline of Tree Planting for Multifamily Residential Sites in Korea," Sustainability, MDPI, vol. 11(13), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    2. Filoteo Gomez-Martinez & Kirsten M. de Beurs & Jennifer Koch & Jeffrey Widener, 2021. "Multi-Temporal Land Surface Temperature and Vegetation Greenness in Urban Green Spaces of Puebla, Mexico," Land, MDPI, vol. 10(2), pages 1-25, February.
    3. Ruoyi Chen & Xiaochen Cui & Yidong Lei, 2023. "Coordination Analysis of Urban Forest and Urban Development Level: A Case Study of the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    4. Brenda B. Lin & Jacqui Meyers & R. Matthew Beaty & Guy B. Barnett, 2016. "Urban Green Infrastructure Impacts on Climate Regulation Services in Sydney, Australia," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    5. Walton, Z.L. & Poudyal, N.C. & Hepinstall-Cymerman, J. & Johnson Gaither, C. & Boley, B.B., 2016. "Exploring the role of forest resources in reducing community vulnerability to the heat effects of climate change," Forest Policy and Economics, Elsevier, vol. 71(C), pages 94-102.
    6. Grazia Napoli & Rossella Corrao & Gianluca Scaccianoce & Simona Barbaro & Laura Cirrincione, 2022. "Public and Private Economic Feasibility of Green Areas as a Passive Energy Measure: A Case Study in the Mediterranean City of Trapani in Southern Italy," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    7. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    8. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    9. Peillex, Jonathan & El Ouadghiri, Imane & Gomes, Mathieu & Jaballah, Jamil, 2021. "Extreme heat and stock market activity," Ecological Economics, Elsevier, vol. 179(C).
    10. Hanny Chandra Pratama & Theerawat Sinsiri & Aphai Chapirom, 2023. "Green Roof Development in ASEAN Countries: The Challenges and Perspectives," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    11. Sorada Tapsuwan & Raymundo Marcos‐Martinez & Heinz Schandl & Zefan Yu, 2021. "Valuing ecosystem services of urban forests and open spaces: application of the SEEA framework in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 37-65, January.
    12. Jones, Benjamin A., 2019. "Tree Shade, Temperature, and Human Health: Evidence from Invasive Species-induced Deforestation," Ecological Economics, Elsevier, vol. 156(C), pages 12-23.
    13. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    14. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    15. Tayade Sandeep & Rakesh Kumar & Chandrakant Singh & G Murali Achary & Sanjay Deshmukh & Swapnil Thanekar, 2022. "Sustainable Plantation For Reclamation Of Municipal Solid Waste Disposal Site: A Case Study," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 08-13, January.
    16. Maher, Joe, 2013. "Measuring the Energy Savings from Tree Shade," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150567, Agricultural and Applied Economics Association.
    17. Escobedo, Francisco J. & Adams, Damian C. & Timilsina, Nilesh, 2015. "Urban forest structure effects on property value," Ecosystem Services, Elsevier, vol. 12(C), pages 209-217.
    18. Soto, José R. & Escobedo, Francisco J. & Khachatryan, Hayk & Adams, Damian C., 2018. "Consumer demand for urban forest ecosystem services and disservices: Examining trade-offs using choice experiments and best-worst scaling," Ecosystem Services, Elsevier, vol. 29(PA), pages 31-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2026-:d:117766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.