IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p748-d75329.html
   My bibliography  Save this article

Intelligent Control of a Distributed Energy Generation System Based on Renewable Sources

Author

Listed:
  • Ciprian Vlad

    (Department of Automatic Control and Electrical Engineering, “Dunarea de Jos” University of Galati, Galati 800008, Romania)

  • Marian Barbu

    (Department of Automatic Control and Electrical Engineering, “Dunarea de Jos” University of Galati, Galati 800008, Romania
    Department of Telecommunication and Systems Engineering, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain)

  • Ramon Vilanova

    (Department of Telecommunication and Systems Engineering, Universitat Autonoma de Barcelona, Bellaterra, Barcelona 08193, Spain)

Abstract

The control of low power systems, which include renewable energy sources, a local network, an electrochemical storage subsystem and a grid connection, is inherently hierarchical. The lower level consists of the wind energy sources (power limitation at rated value in full load regime and energy optimization in partial load regime) and photovoltaic (energy conversion optimization) control systems. The present paper deals with control problem at the higher level and aims at generating the control solution for the energetic transfer between the system components, given that the powers of the renewable energy sources and the power in the local network have random characteristics. For the higher level, the paper proposes a mixed performance criterion, which includes an energy sub-criterion concerning the costs of electricity supplied to local consumers, and a sub-criterion related to the lifetime of the battery. Three variants were defined for the control algorithm implemented by using fuzzy logic techniques, in order to control the energy transfer in the system. Particular attention was given to developing the models used for the simulation of the distributed energy system components and to the whole control system, given that the objective is not the real-time optimization of the criterion, but to establish by numerical simulation in the design stage the “proper” parameters of the control system. This is done by taking into account the multi-criteria performance objective when the power of renewable energy sources and the load have random characteristics.

Suggested Citation

  • Ciprian Vlad & Marian Barbu & Ramon Vilanova, 2016. "Intelligent Control of a Distributed Energy Generation System Based on Renewable Sources," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:748-:d:75329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
    3. Ramon-Marin, Miquel & Sumper, Andreas & Villafafila-Robles, Roberto & Bergas-Jane, Joan, 2014. "Active power estimation of photovoltaic generators for distribution network planning based on correlation models," Energy, Elsevier, vol. 64(C), pages 758-770.
    4. Diop, Amadou D. & Ceanga, Emil & Rétiveau, Jean-Louis & Méthot, Jean-François & Ilinca, Adrian, 2007. "Real-time three-dimensional wind simulation for windmill rig tests," Renewable Energy, Elsevier, vol. 32(13), pages 2268-2290.
    5. Qazi, Sajid Hussain & Mustafa, Mohd Wazir, 2016. "Review on active filters and its performance with grid connected fixed and variable speed wind turbine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 420-438.
    6. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    7. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    8. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Zhu & Zhenyu Zhao, 2017. "Chinese Electric Power Development Coordination Analysis on Resource, Production and Consumption: A Provincial Case Study," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    2. Chuang, Ming-Tung & Chang, Shih-Yu & Hsiao, Ta-Chih & Lu, Yun-Ru & Yang, Tsung-Yeh, 2019. "Analyzing major renewable energy sources and power stability in Taiwan by 2030," Energy Policy, Elsevier, vol. 125(C), pages 293-306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    2. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    3. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    4. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    5. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    6. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    7. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    8. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2019. "Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage," Renewable Energy, Elsevier, vol. 131(C), pages 1156-1167.
    9. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    10. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    11. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    12. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    13. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    14. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    15. Katheryn Donado & Loraine Navarro & Christian G. Quintero M. & Mauricio Pardo, 2019. "HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems," Energies, MDPI, vol. 13(1), pages 1-20, December.
    16. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    17. Jichun Liu & Jianhua Li & Yue Xiang & Xin Zhang & Wanxiao Jiang, 2019. "Optimal Sizing of Cascade Hydropower and Distributed Photovoltaic Included Virtual Power Plant Considering Investments and Complementary Benefits in Electricity Markets," Energies, MDPI, vol. 12(5), pages 1-23, March.
    18. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
    19. Sharifzadeh, Mahdi & Lubiano-Walochik, Helena & Shah, Nilay, 2017. "Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 385-398.
    20. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:748-:d:75329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.