IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1194-d83406.html
   My bibliography  Save this article

The Impact of Different Weather Files on London Detached Residential Building Performance—Deterministic, Uncertainty, and Sensitivity Analysis on CIBSE TM48 and CIBSE TM49 Future Weather Variables Using CIBSE TM52 as Overheating Criteria

Author

Listed:
  • Joseph Amoako-Attah

    (Department of Civil and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Ali B-Jahromi

    (Department of Civil and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK)

Abstract

Though uncertainties of input variables may have significant implications on building simulations, they are quite often not identified, quantified, or included in building simulations results. This paper considers climatic deterministic, uncertainty, and sensitivity analysis through a series of simulations using the CIBSE UKCIP02 future weather years, CIBSE TM48 for design summer years (DSYs), and the latest CIBSE TM49 DSY future weather data which incorporates the UKCP09 projections to evaluate the variance and the impact of differing London future weather files on indoor operative temperature of a detached dwelling in the United Kingdom using the CIBSE TM52 overheating criteria. The work analyses the variability of comparable weather data set to identify the most influential weather parameters that contribute to thermal comfort implications for these dwellings. The choice of these weather files is to ascertain their differences, as their development is underpinned by different climatic projections. The overall pattern of the variability of the UKCIP02 and UKCP09 Heathrow weather data sets under Monte Carlo sensitivity consideration do not seem to be very different from each other. The deterministic results show that the operative temperatures of the UKCIP02 are slightly higher than those of UKCP09, with the UKCP09 having a narrow range of operative temperatures. The Monte Carlo sensitivity analysis quantified and affirmed the dry bulb and radiant temperatures as the most influential weather parameters that affect thermal comfort on dwellings.

Suggested Citation

  • Joseph Amoako-Attah & Ali B-Jahromi, 2016. "The Impact of Different Weather Files on London Detached Residential Building Performance—Deterministic, Uncertainty, and Sensitivity Analysis on CIBSE TM48 and CIBSE TM49 Future Weather Variables Usi," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1194-:d:83406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    2. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    3. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    4. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    5. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    7. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    8. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    9. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    10. Luerssen, Christoph & Verbois, Hadrien & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2021. "Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling," Applied Energy, Elsevier, vol. 286(C).
    11. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    12. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    13. Younhee Choi & Doosam Song & Sungmin Yoon & Junemo Koo, 2021. "Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads," Energies, MDPI, vol. 14(2), pages 1-23, January.
    14. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    15. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    16. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    17. Ahmed Al Amoodi & Elie Azar, 2018. "Impact of Human Actions on Building Energy Performance: A Case Study in the United Arab Emirates (UAE)," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    18. Stegnar, G. & Cerovšek, T., 2019. "Information needs for progressive BIM methodology supporting the holistic energy renovation of office buildings," Energy, Elsevier, vol. 173(C), pages 317-331.
    19. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    20. Rackes, Adams & Melo, Ana Paula & Lamberts, Roberto, 2016. "Naturally comfortable and sustainable: Informed design guidance and performance labeling for passive commercial buildings in hot climates," Applied Energy, Elsevier, vol. 174(C), pages 256-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1194-:d:83406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.