IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p4219-d1650620.html
   My bibliography  Save this article

Stakeholders’ Preferences for Sustainable Agricultural Practices in Mediterranean Cereal Cropping Systems

Author

Listed:
  • Javier Calatrava

    (Department of Agricultural Economics, Finance and Accounting, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain)

  • Jorge Álvaro-Fuentes

    (Soil and Water Department, Estación Experimental de Aula Dei (EEAD), Spanish National Research Council (CSIC), 50059 Zaragoza, Spain)

  • David Martínez-Granados

    (Department of Agricultural Production and Technology, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Samuel Franco-Luesma

    (Department of Agricultural Systems, Forestry and Environment, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain)

  • María Dolores Gómez-López

    (Sustainable Use, Management and Reclamation of Soil and Water Research Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain)

Abstract

This study assesses local stakeholders’ perceptions regarding how a Mediterranean cereal-based cropping system could transition to a more sustainable production, focusing on the identification of the most suitable alternatives for their diversification. Fifty-four stakeholders from the Aragon region in Spain, including farmers, technical advisors, public agricultural officers, local researchers, and experts from environmental NGOs, were consulted. Their responses were analysed using multi-criteria decision-making techniques to order their preferences for different farming practices and diversification strategies. Stakeholders’ responses suggest a priority for balancing soil conservation with the economic viability and continuity of farms. This is evident not only in its consideration as a priority objective but also in their preferences for farming practices, where their implications for farm profitability, especially through the choice of less costly alternatives, are a main concern. This economic rationale also influences their choice of crop diversification alternatives, with a preference for short (two-year) rotations in rainfed cereals and double cropping in irrigated cereals, showing a consideration of the balance between environmental and economic sustainability, and for diversification crops that farmers are already familiar with, aiming both to reduce the uncertainties linked to new crops and to minimise the need for technical support.

Suggested Citation

  • Javier Calatrava & Jorge Álvaro-Fuentes & David Martínez-Granados & Samuel Franco-Luesma & María Dolores Gómez-López, 2025. "Stakeholders’ Preferences for Sustainable Agricultural Practices in Mediterranean Cereal Cropping Systems," Sustainability, MDPI, vol. 17(9), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4219-:d:1650620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/4219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/4219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosa Francaviglia & Jorge Álvaro-Fuentes & Claudia Di Bene & Lingtong Gai & Kristiina Regina & Eila Turtola, 2019. "Diversified Arable Cropping Systems and Management Schemes in Selected European Regions Have Positive Effects on Soil Organic Carbon Content," Agriculture, MDPI, vol. 9(12), pages 1-18, December.
    2. Thanh Mai Ha & Gordana Manevska-Tasevska & Martin Weih & Helena Hansson, 2024. "Heterogeneity in farmers’ stage of behavioural change in intercropping adoption: an application of the Transtheoretical Model," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 12(1), pages 1-27, December.
    3. Li, Yafei & Helfenstein, Julian & Swart, Rebecca & Levers, Christian & Mohr, Franziska & Diogo, Vasco & Bürgi, Matthias & Williams, Tim G. & Zafeiriou, Rigas & Zarina, Anita & Ammann, Jeanine & Rolo, , 2025. "Agroecological and technological practices in European arable farming: Past uptake and expert visions for future development," Land Use Policy, Elsevier, vol. 153(C).
    4. Khatri-Chhetri, Arun & Pant, Anjali & Aggarwal, Pramod K. & Vasireddy, Vijya Vardhan & Yadav, Akhilesh, 2019. "Stakeholders prioritization of climate-smart agriculture interventions: Evaluation of a framework," Agricultural Systems, Elsevier, vol. 174(C), pages 23-31.
    5. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Zeenatul & Sabiha, Noor E & Salim, Ruhul, 2022. "Integrated environment-smart agricultural practices: A strategy towards climate-resilient agriculture," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 59-72.
    2. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    3. Roberto Villalba & Garima Joshi & Thomas Daum & Terese E. Venus, 2024. "Financing Climate-Smart Agriculture: a case study from the Indo-Gangetic Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
    4. Carlos Gómez & C. Pérez-Blanco, 2014. "Simple Myths and Basic Maths About Greening Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4035-4044, September.
    5. Helena Shilomboleni, 2020. "Political economy challenges for climate smart agriculture in Africa," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(4), pages 1195-1206, December.
    6. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    7. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    8. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    9. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    10. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    11. David Haro-Monteagudo & Leticia Palazón & Christos Zoumides & Santiago Beguería, 2023. "Optimal Implementation of Climate Change Adaptation Measures to Ensure Long-term Sustainability on Large Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2909-2924, June.
    12. Olduz Nourelahi & Mohammadreza Khaledian & Mohammad Kavoosi-Kalashami & Nader Pirmoradian, 2022. "Factors affecting the adoption of collective pressurized irrigation systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12367-12386, October.
    13. Sánchez-Chóliz, J. & Sarasa, C., 2013. "Análisis de los recursos hídricos de Riegos del Alto Aragón (Huesca) en la primera década del siglo XXI," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 13(01).
    14. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    15. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    16. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    17. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    18. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    19. Stambouli, T. & Faci, J.M. & Zapata, N., 2014. "Water and energy management in an automated irrigation district," Agricultural Water Management, Elsevier, vol. 142(C), pages 66-76.
    20. Andrés, R. & Cuchí, J.A., 2014. "Analysis of sprinkler irrigation management in the LASESA district, Monegros (Spain)," Agricultural Water Management, Elsevier, vol. 131(C), pages 95-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:4219-:d:1650620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.