IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i9p3881-d1642563.html
   My bibliography  Save this article

Analysis of Soil Nutrient Content and Carbon Pool Dynamics Under Different Cropping Systems

Author

Listed:
  • Huinan Xin

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Caixia Lv

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Na Li

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Lei Peng

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Mengdi Chang

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Yongfu Li

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Qinglong Geng

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Shuhuang Chen

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

  • Ning Lai

    (Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)

Abstract

Understanding the effects of agricultural practices on soil nutrient dynamics is critical for optimizing land management in arid regions. This study analyzed spatial patterns, driving factors, and surface stocks (0–20 cm) of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and their stoichiometric ratios (C:N, C:P, and N:P) across six cropping systems (paddy fields, cotton fields, wheat–maize, orchards, wasteland, and others) in the Aksu region, Northwest China, using 1131 soil samples combined with geostatistical and field survey approaches. Results revealed moderate to low levels of SOC, TN, and TP, and stoichiometric ratios, with moderate spatial autocorrelation for SOC, TN, TP, and C:N but weak dependence for C:P and N:P. Cropping systems significantly influenced soil nutrient distribution: intensive systems (paddy fields and orchards) exhibited the highest SOC (22.31 ± 10.37 t hm −2 ), TN (2.20 ± 1.07 t hm −2 ), and TP stocks (peaking at 2.58 t hm −2 in orchards), whereas extensive systems (cotton fields and wasteland) showed severe nutrient depletion. Soil pH and elevation were key drivers of SOC and TN variability across all systems. The C:N ratio ranked highest in “other systems” (e.g., diversified rotations), while wheat–maize fields displayed elevated C:P and N:P ratios, likely linked to imbalanced fertilization. These findings highlight that sustainable intensification (e.g., paddy and orchard management) enhances soil carbon and nutrient retention, whereas low-input practices exacerbate degradation in arid landscapes. The study provides actionable insights for tailoring land-use strategies to improve soil health and support ecosystem resilience in water-limited agroecosystems.

Suggested Citation

  • Huinan Xin & Caixia Lv & Na Li & Lei Peng & Mengdi Chang & Yongfu Li & Qinglong Geng & Shuhuang Chen & Ning Lai, 2025. "Analysis of Soil Nutrient Content and Carbon Pool Dynamics Under Different Cropping Systems," Sustainability, MDPI, vol. 17(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3881-:d:1642563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/9/3881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/9/3881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Z. Y. Yuan & Han Y. H. Chen, 2015. "Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes," Nature Climate Change, Nature, vol. 5(5), pages 465-469, May.
    2. Peng Xu & Geng Li & Yi Zheng & Jimmy C. H. Fung & Anping Chen & Zhenzhong Zeng & Huizhong Shen & Min Hu & Jiafu Mao & Yan Zheng & Xiaoqing Cui & Zhilin Guo & Yilin Chen & Lian Feng & Shaokun He & Xugu, 2024. "Fertilizer management for global ammonia emission reduction," Nature, Nature, vol. 626(8000), pages 792-798, February.
    3. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    3. Qingshui Yu & Chenqi He & Mark A. Anthony & Bernhard Schmid & Arthur Gessler & Chen Yang & Danhua Zhang & Xiaofeng Ni & Yuhao Feng & Jiangling Zhu & Biao Zhu & Shaopeng Wang & Chengjun Ji & Zhiyao Tan, 2024. "Decoupled responses of plants and soil biota to global change across the world’s land ecosystems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Vladimir Isakov & Elena Vlasova & Vladislav Forer & Jose Kenny & Sergey Lyulin, 2024. "Analysis of Slow-Released Fertilisers as a Source of Microplastics," Land, MDPI, vol. 14(1), pages 1-15, December.
    5. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Hongfang Li & Jian Wang & Hu Liu & Zhanmin Wei & Henglu Miao, 2022. "Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    7. Miriam Kizeková & Radoslava Kanianska & Ľubica Jančová & Jozef Čunderlík & Zuzana Dugátová, 2024. "Carbon and Nitrogen Stocks in Agricultural Soils under Different Natural Conditions and Management in Slovakia," Land, MDPI, vol. 13(2), pages 1-17, February.
    8. Dilek Fraisl & Linda See & Steffen Fritz & Mordechai Haklay & Ian McCallum, 2025. "Leveraging the collaborative power of AI and citizen science for sustainable development," Nature Sustainability, Nature, vol. 8(2), pages 125-132, February.
    9. Yini Han & G. Geoff Wang & Tonggui Wu & Wenjing Chen & Yongliang Ji & Songheng Jin, 2021. "Fertilization Failed to Make Positive Effects on Torreya grandis in Severe N-Deposition Subtropics," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    10. Di Tian & Zhengbing Yan & Bernhard Schmid & Jens Kattge & Jingyun Fang & Benjamin D. Stocker, 2024. "Environmental versus phylogenetic controls on leaf nitrogen and phosphorous concentrations in vascular plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Chongchong Qi & Tao Hu & Yi Zheng & Mengting Wu & Fiona H. M. Tang & Min Liu & Bintian Zhang & Sybil Derrible & Qiusong Chen & Gongren Hu & Liyuan Chai & Zhang Lin, 2025. "Global and regional patterns of soil metal(loid) mobility and associated risks," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Zixun Chen & Xuejun Liu & Xiaoqing Cui & Yaowen Han & Guoan Wang, 2021. "Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.
    13. He, Pingru & Yu, Shuang’en & Ding, Jihui & Ma, Tao & Li, Jin’gang & Dai, Yan & Chen, Kaiwen & Peng, Suhan & Zeng, Guangquan & Guo, Shuaishuai, 2024. "Multi-objective optimization of farmland water level and nitrogen fertilization management for winter wheat cultivation under waterlogging conditions based on TOPSIS-Entropy," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Xinyi Shen & Junwei Ma & Yuqian Li & Yijia Li & Xinghui Xia, 2022. "The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
    15. Wenchao Zhang & Chen Guo & Xinguo Zhou & Jianqiang Zhu & Fahu Li, 2024. "Soil CO 2 and CH 4 Dynamics and Their Relationships with Soil Nutrients, Enzyme Activity, and Root Biomass during Winter Wheat Growth under Shallow Groundwater," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    16. Yingjun She & Ping Li & Xuebin Qi & Wei Guo & Shafeeq Ur Rahman & Hongfei Lu & Cancan Ma & Zhenjie Du & Jiaxin Cui & Zhijie Liang, 2022. "Effects of Shallow Groundwater Depth and Nitrogen Application Level on Soil Water and Nitrate Content, Growth and Yield of Winter Wheat," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    17. Na Wang & Mei Huang & Fengxue Gu & Huimin Yan & Shaoqiang Wang & Honglin He & Zhaosheng Wang & Xiangyang Sun & Wenting Xu & Fengting Yang & Guowei Chu, 2019. "Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming," Sustainability, MDPI, vol. 11(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3881-:d:1642563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.