IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15230-d976557.html
   My bibliography  Save this article

The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis

Author

Listed:
  • Xinyi Shen

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China)

  • Junwei Ma

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China)

  • Yuqian Li

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Yijia Li

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China)

  • Xinghui Xia

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China)

Abstract

The quantification of the effects of global changes on soil nutrients is crucial for the prediction of future terrestrial ecosystem changes. Combined with 100 articles and 1129 observations from all over China, the meta-analysis method was applied to explore the effects of various global change factors on soil nutrients, including precipitation change, nitrogen addition, warming, and carbon dioxide (CO 2 ) concentration rise. Results indicated that among all the individual drivers, soil nutrients are most sensitive to N addition. Significant positive effects of N addition on carbon concentration (+4.6%), nitrogen concentration (+6.1%), organic carbon (+5.0%), and available nitrogen (+74.6%) were observed considering all the land-use types. The results highlighted that the combined and interactive effects of multiple global change factors on soil nutrients were of great significance. The interaction of the two drivers is usually additive, followed by antagonism and synergy. Our findings contribute to better understanding of how soil nutrients will change under future global change.

Suggested Citation

  • Xinyi Shen & Junwei Ma & Yuqian Li & Yijia Li & Xinghui Xia, 2022. "The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15230-:d:976557
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiqi Luo & Shiqiang Wan & Dafeng Hui & Linda L. Wallace, 2001. "Acclimatization of soil respiration to warming in a tall grass prairie," Nature, Nature, vol. 413(6856), pages 622-625, October.
    2. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    3. Jizhong Zhou & Kai Xue & Jianping Xie & Ye Deng & Liyou Wu & Xiaoli Cheng & Shenfeng Fei & Shiping Deng & Zhili He & Joy D. Van Nostrand & Yiqi Luo, 2012. "Microbial mediation of carbon-cycle feedbacks to climate warming," Nature Climate Change, Nature, vol. 2(2), pages 106-110, February.
    4. Arunrat, Noppol & Pumijumnong, Nathsuda & Hatano, Ryusuke, 2018. "Predicting local-scale impact of climate change on rice yield and soil organic carbon sequestration: A case study in Roi Et Province, Northeast Thailand," Agricultural Systems, Elsevier, vol. 164(C), pages 58-70.
    5. Manuel Delgado-Baquerizo & Fernando T. Maestre & Antonio Gallardo & Matthew A. Bowker & Matthew D. Wallenstein & Jose Luis Quero & Victoria Ochoa & Beatriz Gozalo & Miguel García-Gómez & Santiago Soli, 2013. "Decoupling of soil nutrient cycles as a function of aridity in global drylands," Nature, Nature, vol. 502(7473), pages 672-676, October.
    6. Z. Y. Yuan & Han Y. H. Chen, 2015. "Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes," Nature Climate Change, Nature, vol. 5(5), pages 465-469, May.
    7. Marcell K. Peters & Andreas Hemp & Tim Appelhans & Joscha N. Becker & Christina Behler & Alice Classen & Florian Detsch & Andreas Ensslin & Stefan W. Ferger & Sara B. Frederiksen & Friederike Gebert &, 2019. "Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions," Nature, Nature, vol. 568(7750), pages 88-92, April.
    8. Anne M. van Valkengoed & Linda Steg, 2019. "Meta-analyses of factors motivating climate change adaptation behaviour," Nature Climate Change, Nature, vol. 9(2), pages 158-163, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihao Wu & Yiyun Chen & Yuanli Zhu & Xiangyang Feng & Jianxiong Ou & Guie Li & Zhaomin Tong & Qingwu Yan, 2023. "Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables," Land, MDPI, vol. 12(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yini Han & G. Geoff Wang & Tonggui Wu & Wenjing Chen & Yongliang Ji & Songheng Jin, 2021. "Fertilization Failed to Make Positive Effects on Torreya grandis in Severe N-Deposition Subtropics," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    2. Zixun Chen & Xuejun Liu & Xiaoqing Cui & Yaowen Han & Guoan Wang, 2021. "Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.
    3. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    4. Violeta Mihaela Dincă & Mihail Busu & Zoltan Nagy-Bege, 2022. "Determinants with Impact on Romanian Consumers’ Energy-Saving Habits," Energies, MDPI, vol. 15(11), pages 1-18, June.
    5. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Marijn H. C. Meijers & Christin Scholz & Ragnheiður “Heather” Torfadóttir & Anke Wonneberger & Marko Markov, 2022. "Learning from the COVID-19 pandemic to combat climate change: comparing drivers of individual action in global crises," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(2), pages 272-282, June.
    7. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Hilary Byerly Flint & Paul Cada & Patricia A. Champ & Jamie Gomez & Danny Margoles & James R. Meldrum & Hannah Brenkert-Smith, 2022. "You vs. us: framing adaptation behavior in terms of private or social benefits," Climatic Change, Springer, vol. 174(1), pages 1-17, September.
    9. Amouzou, Kokou Adambounou & Naab, Jesse B. & Lamers, John P.A. & Borgemeister, Christian & Becker, Mathias & Vlek, Paul L.G., 2018. "CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 85-96.
    10. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    11. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    12. Abdeta Jembere Ebsa, 2019. "The Fate of Soil Resource in Response to Global Warming," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 78-82, January.
    13. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    14. Wang, Wei & Wang, Bao-Zhong & Zhou, Rui & Ullah, Abid & Zhao, Ze-Ying & Wang, Peng-Yang & Su, Yong-Zhong & Xiong, You-Cai, 2022. "Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.
    16. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    17. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    18. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Odou, Philippe & Schill, Marie, 2020. "How anticipated emotions shape behavioral intentions to fight climate change," Journal of Business Research, Elsevier, vol. 121(C), pages 243-253.
    20. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15230-:d:976557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.