IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i6p1198-d1166567.html
   My bibliography  Save this article

Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables

Author

Listed:
  • Zihao Wu

    (Research Center for Transformation Development and Rural Revitalization of Resource-Based Cities in China, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Land Use and Ecological Security Governance in Mining Area, China University of Mining and Technology, Xuzhou 221116, China)

  • Yiyun Chen

    (School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China)

  • Yuanli Zhu

    (Research Center for Transformation Development and Rural Revitalization of Resource-Based Cities in China, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
    Research Center for Land Use and Ecological Security Governance in Mining Area, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiangyang Feng

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Jianxiong Ou

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Guie Li

    (Research Center for Transformation Development and Rural Revitalization of Resource-Based Cities in China, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhaomin Tong

    (School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China)

  • Qingwu Yan

    (Research Center for Transformation Development and Rural Revitalization of Resource-Based Cities in China, China University of Mining and Technology, Xuzhou 221116, China
    School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Accurately mapping soil organic carbon (SOC) is conducive to evaluating carbon storage and soil quality. However, the high spatial heterogeneity of SOC caused by river-related factors and agricultural management brings challenges to digital soil mapping in floodplain farmland. Moreover, current studies focus on the non-linear relationship between SOC and covariates, but ignore the effective range of environmental variables on SOC, which prevents the revelation of the SOC differentiation mechanism. Using the 375 samples collected from the Jiangchang Town near Han River, we aim to determine the main controlling factors of SOC, reveal the effective range of environmental variables, and obtain the spatial map of SOC by using the gradient boosting decision tree (GBDT) model and partial dependence plots. Linear regression was used as a reference. Results showed that GBDT outperformed linear regression. GBDT results show that the distance from the river was the most important SOC factor, confirming the importance of the Han River to the SOC pattern. The partial dependence plots indicate that all environmental variables have their effective ranges, and when their values are extremely high or low, they do not respond to changes in SOC. Specifically, the influential ranges of rivers, irrigation canals, and rural settlements on SOC were within 4000, 200, and 50 m, respectively. The peak SOC was obtained with high clay (≥31%), total nitrogen (≥1.18 g/kg), and total potassium contents (≥11.1 g/kg), but it remained steady when these covariates further increased. These results highlight the importance of revealing the effective range of environmental variables, which provides data support for understanding the spatial pattern of SOC in floodplain farmland, achieving carbon sequestration in farmland and precision agriculture. The GBDT with the partial dependence plot was effective in SOC fitting and mapping.

Suggested Citation

  • Zihao Wu & Yiyun Chen & Yuanli Zhu & Xiangyang Feng & Jianxiong Ou & Guie Li & Zhaomin Tong & Qingwu Yan, 2023. "Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables," Land, MDPI, vol. 12(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1198-:d:1166567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/6/1198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/6/1198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Chen & Zhengxin Yin & Meng Tang & Tuanjie Li & Dong Xu, 2022. "Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    2. Wang, Xiquan & Zhang, Hongyuan & Zhang, Zhizhong & Zhang, Chenping & Zhang, Kai & Pang, Huancheng & Bell, Stephen M. & Li, Yuyi & Chen, Ji, 2023. "Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Xinyi Shen & Junwei Ma & Yuqian Li & Yijia Li & Xinghui Xia, 2022. "The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
    4. Bingrui Liu & Jiacheng Qian & Ran Zhao & Qijun Yang & Kening Wu & Huafu Zhao & Zhe Feng & Jianhui Dong, 2022. "Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban–Rural Gradient: A Case Study of Beijing," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    5. Arcesio Salamanca-Carreño & Mauricio Vélez-Terranova & Oscar Mauricio Vargas-Corzo & Otoniel Pérez-López & Andrés Fernando Castillo-Pérez & Pere M. Parés-Casanova, 2023. "Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia," Agriculture, MDPI, vol. 13(1), pages 1-11, January.
    6. Chen, Shuai & Mao, Xiaomin & Shang, Songhao, 2022. "Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils," Agricultural Water Management, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Liu & Wenhao Feng & Hongyuan Zhang & Fangdi Chang & Jing Wang & Yuyi Li & Huancheng Pang, 2023. "If Sand Interlayer Acts Better than Straw Interlayer for Saline Soil Amelioration? A Three-Year Field Experiment," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    2. Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    4. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    5. Zhouling Shao & Chunyan Chen & Yuanli Liu & Jie Cao & Guitang Liao & Zhengyu Lin, 2023. "Impact of Land Use Change on Carbon Storage Based on FLUS-InVEST Model: A Case Study of Chengdu–Chongqing Urban Agglomeration, China," Land, MDPI, vol. 12(8), pages 1-17, August.
    6. Vito Armando Laudicina & Paolo Ruisi & Luigi Badalucco, 2023. "Soil Quality and Crop Nutrition," Agriculture, MDPI, vol. 13(7), pages 1-4, July.
    7. Li, Shuoyang & Yang, Guiyu & Wang, Hao & Song, Xiufang & Chang, Cui & Du, Jie & Gao, Danyang, 2023. "A spatial-temporal optimal allocation method of irrigation water resources considering groundwater level," Agricultural Water Management, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1198-:d:1166567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.