IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p555-d1606884.html
   My bibliography  Save this article

Landslide Susceptibility Mapping in Xinjiang: Identifying Critical Thresholds and Interaction Effects Among Disaster-Causing Factors

Author

Listed:
  • Xiangyang Feng

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhaoqi Wu

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Zihao Wu

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China
    Present address: Room A512, School of Public Policy & Management School of Emergency Management, China University of Mining and Technology, No.1 Daxue Street, Tongshan District, Xuzhou 221116, China.)

  • Junping Bai

    (Xinjiang Power Transmission and Transformation Co., Ltd., Urumqi 830000, China)

  • Shixiang Liu

    (Zhongdihuaan Science and Technology Co., Ltd., Urumqi 830000, China)

  • Qingwu Yan

    (School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Landslides frequently occur in the Xinjiang Uygur Autonomous Region of China due to its complex geological environment, posing serious risks to human safety and economic stability. Existing studies widely use machine learning models for landslide susceptibility prediction. However, they often fail to capture the threshold and interaction effects among environmental factors, limiting their ability to accurately identify high-risk zones. To address this gap, this study employed a gradient boosting decision tree (GBDT) model to identify critical thresholds and interaction effects among disaster-causing factors, while mapping the spatial distribution of landslide susceptibility based on 20 covariates. The performance of this model was compared with that of a support vector machine and deep neural network models. Results showed that the GBDT model achieved superior performance, with the highest AUC and recall values among the tested models. After applying clustering algorithms for non-landslide sample selection, the GBDT model maintained a high recall value of 0.963, demonstrating its robustness against imbalanced datasets. The GBDT model identified that 8.86% of Xinjiang’s total area exhibits extremely high or high landslide susceptibility, mainly concentrated in the Tianshan and Altai mountain ranges. Lithology, precipitation, profile curvature, the Modified Normalized Difference Water Index (MNDWI), and vertical deformation were identified as the primary contributing factors. Threshold effects were observed in the relationships between these factors and landslide susceptibility. The probability of landslide occurrence increased sharply when precipitation exceeded 2500 mm, vertical deformation was greater than 0 mm a −1 , or the MNDWI values were extreme (<−0.4, >0.2). Additionally, this study confirmed bivariate interaction effects. Most interactions between factors exhibited positive effects, suggesting that combining two factors enhances classification performance compared with using each factor independently. This finding highlights the intricate and interdependent nature of these factors in landslide susceptibility. These findings emphasize the necessity of incorporating threshold and interaction effects in landslide susceptibility assessments, offering practical insights for disaster prevention and mitigation.

Suggested Citation

  • Xiangyang Feng & Zhaoqi Wu & Zihao Wu & Junping Bai & Shixiang Liu & Qingwu Yan, 2025. "Landslide Susceptibility Mapping in Xinjiang: Identifying Critical Thresholds and Interaction Effects Among Disaster-Causing Factors," Land, MDPI, vol. 14(3), pages 1-25, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:555-:d:1606884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zihao Wu & Yiyun Chen & Yuanli Zhu & Xiangyang Feng & Jianxiong Ou & Guie Li & Zhaomin Tong & Qingwu Yan, 2023. "Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables," Land, MDPI, vol. 12(6), pages 1-15, June.
    2. Roberta Plangg Riegel & Darlan Daniel Alves & Bruna Caroline Schmidt & Guilherme Garcia Oliveira & Claus Haetinger & Daniela Montanari Migliavacca Osório & Marco Antônio Siqueira Rodrigues & Daniela M, 2020. "Assessment of susceptibility to landslides through geographic information systems and the logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 497-511, August.
    3. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    4. Ting-Kai Nian & Zhong-Kai Feng & Peng-Cheng Yu & Hui-Jun Wu, 2013. "Strength behavior of slip-zone soils of landslide subject to the change of water content," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 711-721, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    2. Guansheng Han & Yu Zhou & Richeng Liu & Qiongqiong Tang & Xingkai Wang & Leibo Song, 2022. "Influence of surface roughness on shear behaviors of rock joints under constant normal load and stiffness boundary conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 367-385, May.
    3. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    4. Huie Chen & Wenliang Ma & Xiaoqing Yuan & Cencen Niu & Bin Shi & Guili Tian, 2022. "Influence of stress conditions on shear behavior of slip zone soil in ring shear test: an experimental study and numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1179-1197, March.
    5. Kai Sun & Zhiqing Li & Shuangjiao Wang & Ruilin Hu, 2024. "A support vector machine model of landslide susceptibility mapping based on hyperparameter optimization using the Bayesian algorithm: a case study of the highways in the southern Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11377-11398, September.
    6. Shaohan Zhang & Shucheng Tan & Hui Geng & Ronwei Li & Yongqi Sun & Jun Li, 2023. "Evaluation of Geological Hazard Risk in Yiliang County, Yunnan Province, Using Combined Assignment Method," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    7. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    8. Ge Yan & Guoan Tang & Sijin Li & Dingyang Lu & Liyang Xiong & Shouyun Liang, 2023. "Uncertainty in regional scale assessment of landslide susceptibility using various resolutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 399-423, May.
    9. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    10. Jianfeng Sun & Tiesheng Yan & Jinshu Hu & Chao Ma & Jiajun Gao & Hui Xu, 2024. "Slope-scale landslide susceptibility assessment based on coupled models of frequency ratio and multiple regression analysis with limited historical hazards data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 1-23, January.
    11. Shaohan Zhang & Shucheng Tan & Lifeng Liu & Duanyu Ding & Yongqi Sun & Jun Li, 2023. "Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, Ch," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    12. Chelsea Dandridge & Thomas A. Stanley & Dalia B. Kirschbaum & Venkataraman Lakshmi, 2023. "Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    13. Sérgio C. Oliveira & José L. Zêzere & Ricardo A. C. Garcia & Susana Pereira & Teresa Vaz & Raquel Melo, 2024. "Landslide susceptibility assessment using different rainfall event-based landslide inventories: advantages and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9361-9399, August.
    14. Yimin Li & Peikun Ji & Shiyi Liu & Juanzhen Zhao & Yiming Yang, 2025. "Susceptibility evaluation of highway landslide disasters based on SBAS-InSAR: a case study of S211 highway in Lanping County," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 2587-2612, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:555-:d:1606884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.