IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10466-d1185836.html
   My bibliography  Save this article

Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, China

Author

Listed:
  • Shaohan Zhang

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China)

  • Shucheng Tan

    (School of Earth Science, Yunnan University, Kunming 650500, China)

  • Lifeng Liu

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China)

  • Duanyu Ding

    (Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming 650500, China)

  • Yongqi Sun

    (Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China)

  • Jun Li

    (Yunnan Architectural Engineering Design Company Limited, Kunming 650501, China)

Abstract

In China, the majority of mountainous regions are characterized by complex topography and a delicate, sensitive geological environment. These areas, which exhibit insufficient infrastructure and widespread irrational human engineering activities, are often susceptible to geological hazards such as slope instability and soil mass movements. These geological hazards pose substantial threats to human lives and property, hindering the progress of mountainous areas. Therefore, conducting research on evaluating the vulnerability of slope rock and soil mass movement geological hazards (hereinafter referred to as geological hazards) is of utmost importance for hazard prevention, emergency management, and economic advancement in these regions. This study focuses on Xuanwei City and selects eight factors for evaluation, including elevation, gradient, slope aspect, normalized vegetation index, stratigraphic lithology, distance from faults, distance from rivers, and distance from roads. These factors are chosen based on a comprehensive analysis of the spatial and temporal distribution of geological hazards and hazard incubation conditions. Two paired models, the deterministic coefficient model + logistic regression model (CF+LR) and the information quantity model + logistic regression model (I+LR), were employed to assess the study area quantitatively. The performance of these models was assessed by employing receiver operating characteristic (ROC) curves and calculating the corresponding area under curve (AUC) values. The results indicate that: (1) The AUC values for the coupled CF+LR and I+LR models are 0.799 and 0.772, respectively. These results indicate that both models provide an objective and reliable assessment of the vulnerability to geological hazards, specifically slope rock and soil mass movements, in the study area. (2) Based on the CF+LR model calculations, the geological hazard susceptibility of Xuanwei City can be categorized into four zones: extremely high susceptibility (6.09%), high susceptibility (31.08%), medium susceptibility (32.26%), and low susceptibility (30.57%). (3) The CF+LR model more accurately represents the evaluation results and offers a strong reference value.

Suggested Citation

  • Shaohan Zhang & Shucheng Tan & Lifeng Liu & Duanyu Ding & Yongqi Sun & Jun Li, 2023. "Slope Rock and Soil Mass Movement Geological Hazards Susceptibility Evaluation Using Information Quantity, Deterministic Coefficient, and Logistic Regression Models and Their Comparison at Xuanwei, Ch," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10466-:d:1185836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    2. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    3. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    4. Roberta Plangg Riegel & Darlan Daniel Alves & Bruna Caroline Schmidt & Guilherme Garcia Oliveira & Claus Haetinger & Daniela Montanari Migliavacca Osório & Marco Antônio Siqueira Rodrigues & Daniela M, 2020. "Assessment of susceptibility to landslides through geographic information systems and the logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 497-511, August.
    5. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaohan Zhang & Shucheng Tan & Hui Geng & Ronwei Li & Yongqi Sun & Jun Li, 2023. "Evaluation of Geological Hazard Risk in Yiliang County, Yunnan Province, Using Combined Assignment Method," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    2. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    4. Shaohan Zhang & Shucheng Tan & Hui Geng & Ronwei Li & Yongqi Sun & Jun Li, 2023. "Evaluation of Geological Hazard Risk in Yiliang County, Yunnan Province, Using Combined Assignment Method," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    5. Hamid Reza Pourghasemi & Amiya Gayen & Sungjae Park & Chang-Wook Lee & Saro Lee, 2018. "Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    6. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    7. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    8. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    9. Zhengyang Su & Guizhi Wang & Yakun Wang & Xiang Luo & Hao Zhang, 2022. "Numerical simulation of dynamic catastrophe of slope instability in three Gorges reservoir area based on FEM and SPH method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 709-724, March.
    10. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    11. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    12. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    13. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    14. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    15. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    16. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    17. Jean Baptiste Nsengiyumva & Geping Luo & Egide Hakorimana & Richard Mind'je & Aboubakar Gasirabo & Valentine Mukanyandwi, 2019. "Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2576-2595, November.
    18. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    19. Shairy Chaudhary & Atul Kumar & Malay Pramanik & Mahabir Singh Negi, 2022. "Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2225-2266, February.
    20. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10466-:d:1185836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.