IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i2d10.1007_s11069-020-04067-9.html
   My bibliography  Save this article

Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping

Author

Listed:
  • Sina Paryani

    (Islamic Azad University)

  • Aminreza Neshat

    (Islamic Azad University)

  • Saman Javadi

    (University of Tehran)

  • Biswajeet Pradhan

    (University of Technology Sydney
    Sejong University)

Abstract

Many landslides occur in the Karun watershed in the Zagros Mountains. In the present study, we employed a novel comparative approach for spatial modeling of landslides given the high potential of landslides in the region. The aim of the study was to combine adaptive neuro-fuzzy inference system (ANFIS) with grey wolf optimizer (GWO) and particle swarm optimizer (PSO) algorithms using the outputs of qualitative stepwise weight assessment ratio analysis (SWARA) and quantitative certainty factor (CF) models. To this end, 264 landslide positions and twelve conditioning factors including slope, aspect, altitude, distance to faults, distance to rivers, distance to roads, land use, lithology, rainfall, plan and profile curvature and TWI were then extracted considering regional characteristics, literature review and available data. In the next step, the multi-criteria SWARA decision-making model and CF probability model were used to evaluate a correlation between landslide distribution and conditioning factors. Ultimately, landslide susceptibility maps were generated by ANFIS-GWO and ANFIS-PSO hybrid models and the accuracy of models was assessed by ROC curve. According to the results, the area under the curve (AUC) for the hybrid models $${\text{ANFIS - GWO}}_{{\text{SWARA}}}$$ ANFIS - GWO SWARA , $${\text{ANFIS - PSO}}_{{\text{SWARA}}}$$ ANFIS - PSO SWARA , $${\text{ANFIS - GWO}}_{{\text{CF}}}$$ ANFIS - GWO CF and $${\text{ANFIS - PSO}}_{{\text{CF}}}$$ ANFIS - PSO CF was 0.789, 0.838, 0.850 and 0.879, respectively. The hybrid models $${\text{ANFIS - PSO}}_{{\text{CF}}}$$ ANFIS - PSO CF and $${\text{ANFIS - GWO}}_{{\text{SWARA}}}$$ ANFIS - GWO SWARA showed the highest and lowest prediction rate, respectively. Moreover, CF outperformed the SWARA method in terms of evaluating correlation between conditioning factors and landslides. The map produced in this study can be used by regional authorities to manage landslide risk. Graphic abstract

Suggested Citation

  • Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04067-9
    DOI: 10.1007/s11069-020-04067-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04067-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04067-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    2. Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
    3. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    2. Omid Asadi Nalivan & Ziaedin Badehian & Majid Sadeghinia & Adel Soltani & Iman Islami & Ali Boustan, 2022. "A step beyond susceptibility: an adaptation of risk framework for monetary risk estimation of gully erosion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1661-1684, March.
    3. Abidhan Bardhan & Raushan Kumar Singh & Sufyan Ghani & Gerasimos Konstantakatos & Panagiotis G. Asteris, 2023. "Modelling Soil Compaction Parameters Using an Enhanced Hybrid Intelligence Paradigm of ANFIS and Improved Grey Wolf Optimiser," Mathematics, MDPI, vol. 11(14), pages 1-23, July.
    4. Yewei Song & Jie Guo & Fengshan Ma & Jia Liu & Guang Li, 2023. "Improving the Accuracy of Regional Engineering Disturbance Disaster Susceptibility by Optimizing Weight Calculation Methods—A Case Study in the Himalayan Area, China," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    5. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    6. Saeed Davar & Masoud Nobahar & Mohammad Sadik Khan & Farshad Amini, 2022. "The Development of PSO-ANN and BOA-ANN Models for Predicting Matric Suction in Expansive Clay Soil," Mathematics, MDPI, vol. 10(16), pages 1-38, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    2. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    3. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    4. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    5. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    6. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    7. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    8. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    9. Sandeep Kumar & Vikram Gupta, 2021. "Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2461-2488, December.
    10. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    11. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    12. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    13. Jean Baptiste Nsengiyumva & Geping Luo & Egide Hakorimana & Richard Mind'je & Aboubakar Gasirabo & Valentine Mukanyandwi, 2019. "Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2576-2595, November.
    14. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    15. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    16. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    17. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    18. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    19. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    20. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04067-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.