IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i9p973-d636320.html
   My bibliography  Save this article

Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece

Author

Listed:
  • Christos Polykretis

    (Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch Lab), Institute for Mediterranean Studies (IMS), Foundation for Research and Technology—Hellas (FORTH), 74100 Rethymno, Greece)

  • Manolis G. Grillakis

    (Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch Lab), Institute for Mediterranean Studies (IMS), Foundation for Research and Technology—Hellas (FORTH), 74100 Rethymno, Greece)

  • Athanasios V. Argyriou

    (Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch Lab), Institute for Mediterranean Studies (IMS), Foundation for Research and Technology—Hellas (FORTH), 74100 Rethymno, Greece)

  • Nikos Papadopoulos

    (Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch Lab), Institute for Mediterranean Studies (IMS), Foundation for Research and Technology—Hellas (FORTH), 74100 Rethymno, Greece)

  • Dimitrios D. Alexakis

    (Laboratory of Geophysical—Satellite Remote Sensing and Archaeo-Environment (GeoSat ReSeArch Lab), Institute for Mediterranean Studies (IMS), Foundation for Research and Technology—Hellas (FORTH), 74100 Rethymno, Greece)

Abstract

Over the last few years, landslides have occurred more and more frequently worldwide, causing severe effects on both natural and human environments. Given that landslide susceptibility (LS) assessments and mapping can spatially determine the potential for landslides in a region, it constitutes a basic step in effective risk management and disaster response. Nowadays, several LS models are available, with each one having its advantages and disadvantages. In order to enhance the benefits and overcome the weaknesses of individual modeling, the present study proposes a hybrid LS model based on the integration of two different statistical analysis models, the multivariate Geographical Detector (GeoDetector) and the bivariate information value (IV). In a GIS-based framework, the hybrid model named GeoDIV was tested to generate a reliable LS map for the vicinity of the Pinios artificial lake (Ilia, Greece), a Greek wetland. A landslide inventory of 60 past landslides and 14 conditioning (morphological, hydro-lithological and anthropogenic) factors was prepared to compose the spatial database. An LS map was derived from the GeoDIV model, presenting the different zones of potential landslides (probability) for the study area. This map was then validated by success and prediction rates—which translate to the accuracy and prediction ability of the model, respectively. The findings confirmed that hybrid modeling can outperform individual modeling, as the proposed GeoDIV model presented better validation results than the IV model.

Suggested Citation

  • Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:973-:d:636320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/9/973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/9/973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ananta Pradhan & Yun-Tae Kim, 2014. "Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1189-1217, June.
    2. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    3. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    4. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    5. N. Sabatakakis & G. Koukis & E. Vassiliades & S. Lainas, 2013. "Landslide susceptibility zonation in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 523-543, January.
    6. Cheng Su & Lili Wang & Xizhi Wang & Zhicai Huang & Xiaocan Zhang, 2015. "Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1759-1779, April.
    7. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Su & Chang Liu & Donghui Dai & Wenkai Chen & Zhen Zhang & Yaowu Wang, 2023. "Distribution Characteristics and Influencing Factors of the National Comprehensive Disaster-Reduction Demonstration Community in China," Land, MDPI, vol. 12(8), pages 1-30, August.
    2. Xiao Zhu & Di Yao & Hanyue Shi & Kaichen Qu & Yuxiao Tang & Kaixu Zhao, 2022. "The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey," Land, MDPI, vol. 11(10), pages 1-44, October.
    3. Yong Huang & Qinjun Kang & Qi Wang & Lili Luo & Tingting Wang & Qingrui Chang, 2022. "Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    5. Xueling Wu & Ruiqi Mao & Xiaojia Guo, 2022. "Equilibrium of Tiered Healthcare Resources during the COVID-19 Pandemic in China: A Case Study of Taiyuan, Shanxi Province," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    6. Weikun Zhang & Peng Gao & Zhe Chen & Hailan Qiu, 2023. "Preventing Agricultural Non-Point Source Pollution in China: The Effect of Environmental Regulation with Digitization," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    7. Enrico Miccadei & Cristiano Carabella & Giorgio Paglia, 2022. "Landslide Hazard and Environment Risk Assessment," Land, MDPI, vol. 11(3), pages 1-5, March.
    8. Zhihong Liao & Kai Su & Xuebing Jiang & Xiangbei Zhou & Zhu Yu & Zhongchao Chen & Changwen Wei & Yiming Zhang & Luying Wang, 2022. "Ecosystem and Driving Force Evaluation of Northeast Forest Belt," Land, MDPI, vol. 11(8), pages 1-25, August.
    9. Athanasios V. Argyriou & Christos Polykretis & Richard M. Teeuw & Nikos Papadopoulos, 2022. "Geoinformatic Analysis of Rainfall-Triggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping," Sustainability, MDPI, vol. 14(7), pages 1-25, March.
    10. Fei Xie & Shuaibing Zhang & Kaixu Zhao & Fengmei Quan, 2022. "Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China," Land, MDPI, vol. 11(9), pages 1-33, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
    2. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    3. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    4. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    5. Saeed Davar & Masoud Nobahar & Mohammad Sadik Khan & Farshad Amini, 2022. "The Development of PSO-ANN and BOA-ANN Models for Predicting Matric Suction in Expansive Clay Soil," Mathematics, MDPI, vol. 10(16), pages 1-38, August.
    6. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    7. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    8. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    9. Nhat-Duc Hoang & Quoc-Lam Nguyen & Xuan-Linh Tran, 2019. "Automatic Detection of Concrete Spalling Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and Image Texture Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, July.
    10. Somnath Bera & Vaibhav Kumar Upadhyay & Balamurugan Guru & Thomas Oommen, 2021. "Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1257-1289, August.
    11. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    12. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    13. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    14. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    15. Asmita Ahmad & Meutia Farida & Nirmala Juita & Muh Jayadi, 2023. "Soil micromorphology for modeling spatial on landslide susceptibility mapping: a case study in Kelara Subwatershed, Jeneponto Regency of South Sulawesi, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1445-1462, September.
    16. Sofia Anagnostopoulou & Nikolaos Depountis & Nikolaos Sabatakakis & Panagiotis Pelekis, 2022. "Large Shear Strength Parameters for Landslide Analyses on Highly Weathered Flysch," Land, MDPI, vol. 11(8), pages 1-19, August.
    17. Guido Antonetti & Matteo Gentilucci & Domenico Aringoli & Gilberto Pambianchi, 2022. "Analysis of landslide Susceptibility and Tree Felling Due to an Extreme Event at Mid-Latitudes: Case Study of Storm Vaia, Italy," Land, MDPI, vol. 11(10), pages 1-21, October.
    18. M. Ponziani & D. Ponziani & A. Giorgi & H. Stevenin & S. M. Ratto, 2023. "The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 143-162, May.
    19. Okoli Jude Emeka & Haslinda Nahazanan & Bahareh Kalantar & Zailani Khuzaimah & Ojogbane Success Sani, 2021. "Evaluation of the Effect of Hydroseeded Vegetation for Slope Reinforcement," Land, MDPI, vol. 10(10), pages 1-23, September.
    20. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:9:p:973-:d:636320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.