IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i2d10.1007_s11069-022-05344-5.html
   My bibliography  Save this article

GIS-based landslide susceptibility zonation and comparative analysis using analytical hierarchy process and conventional weighting-based multivariate statistical methods in the Lachung River Basin, North Sikkim

Author

Listed:
  • Sudatta Wadadar

    (Independent Researcher)

  • Bhabani Prasad Mukhopadhyay

    (Indian Institute of Engineering Science and Technology)

Abstract

In this work, an extensive study of landslide susceptibility zonation (LSZ) has been performed in Lachung River Basin owing to its landslide-prone nature. The LSZ has been framed as a comparative study of two different multi-criteria analysis methods, namely the Analytical Hierarchy Process (AHP) and Conventional Weighting (CW) method. The causative factors of landslides (geology, land use and land cover, rainfall, drainage density, normalised difference vegetation index, slope, elevation, aspect) have been duly considered as spatial thematic data layers. Furthermore, subsequent calculation and superimposition of all these data layers are performed on the GIS environment. Both the AHP and CW method gave their optimum predictions, which indicates that highly susceptible zones cover the maximum area of the river basin. On the other side, the very high susceptible zones are mainly observed along the riverbank, which is barren in nature, and the barren steep-sloped terrain already experiences a number of landslides. Similarly, the very low and low susceptible zones have been observed in the areas covered by glaciers and perpetual snow. Finally, the predictions of the AHP and CW methods have been validated with field data of the location of existing landslide points and two different statistical techniques (ROC curve, landslide density) that offer a clear estimation of the comparative merits/demerits of these methods. However, the CW method claims more acceptability as a predictive measure of LSZ in the present study area for portraying the ground truth more accurately than the widely accepted AHP method for the same purpose.

Suggested Citation

  • Sudatta Wadadar & Bhabani Prasad Mukhopadhyay, 2022. "GIS-based landslide susceptibility zonation and comparative analysis using analytical hierarchy process and conventional weighting-based multivariate statistical methods in the Lachung River Basin, No," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1199-1236, September.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:2:d:10.1007_s11069-022-05344-5
    DOI: 10.1007/s11069-022-05344-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05344-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05344-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Indrajit Pal & Sankar Nath & Khemraj Shukla & Dilip Pal & Abhishek Raj & K. Thingbaijam & B. Bansal, 2008. "Earthquake hazard zonation of Sikkim Himalaya using a GIS platform," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(3), pages 333-377, June.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    4. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yewei Song & Jie Guo & Fengshan Ma & Jia Liu & Guang Li, 2023. "Improving the Accuracy of Regional Engineering Disturbance Disaster Susceptibility by Optimizing Weight Calculation Methods—A Case Study in the Himalayan Area, China," Sustainability, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    2. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    3. Erica Akemi Goto & Keith Clarke, 2021. "Using expert knowledge to map the level of risk of shallow landslides in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1701-1729, September.
    4. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    5. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    6. Weimin Ye & Cen Gao & Zhangrong Liu & Qiong Wang & Wei Su, 2023. "A Fuzzy-AHP-based variable weight safety evaluation model for expansive soil slope," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 559-581, October.
    7. Abdessamed Derdour & Abderrazak Bouanani & Noureddine Kaid & Kanit Mukdasai & A. M. Algelany & Hijaz Ahmad & Younes Menni & Houari Ameur, 2022. "Groundwater Potentiality Assessment of Ain Sefra Region in Upper Wadi Namous Basin, Algeria Using Integrated Geospatial Approaches," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    8. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    9. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    10. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    11. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    12. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    13. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    14. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    15. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    16. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    17. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    18. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    19. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    20. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:2:d:10.1007_s11069-022-05344-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.