IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000495.html
   My bibliography  Save this article

Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin

Author

Listed:
  • Wang, Xiquan
  • Zhang, Hongyuan
  • Zhang, Zhizhong
  • Zhang, Chenping
  • Zhang, Kai
  • Pang, Huancheng
  • Bell, Stephen M.
  • Li, Yuyi
  • Chen, Ji

Abstract

Clarifying the relationship between salt-affected soils and their adjacent river systems is critical to address the challenges posed by soil salinization on agricultural production. Among the various biophysical and land management factors linked to soil salinization, few studies have investigated the importance of the distance along the river. Based on the Hetao Irrigation District of the Yellow River Basin, we collected 5314 soil samples and analyzed 17 soil parameters to explore the relationship between salt-affected soils and their distance along the river. Soil salinization was reinforced by the distance along the river, as a trade-off between soil ion accumulation and nutrient regulation. Soil total water-soluble salt content increased by 16.4 mg kg−1 every kilometer, likely due to ions leaching from the soils upstream and partially accumulating in the soils downstream, especially for Cl-, SO42-, and Na+. Greater input and less solubility of Ca2+ based soil amendments, phosphorus fertilizers, and organic materials on the less salt-affected soils upstream may explain the declines in soil Ca2+, available phosphorus, and soil organic matter with distance along the river. With every kilometer along the river, soil exchangeable sodium and cation exchange capacity increased by 8.89 × 10−4 and 1.26 × 10−2 cmol kg−1, respectively, which led to an increase in soil exchangeable sodium percentage by 9.59 × 10−5. The increase in soil exchangeable sodium along the river was mainly due to Na+ accumulation, while soil cation exchange capacity was regulated by soil organic matter and total nitrogen. Soil pH increased by 1.21 × 10−3 per kilometer along the river, associated with the decrease of soil organic matter. Future saline soil amelioration and reutilization initiatives at regional scales may be improved by accounting for the changes in soil physicochemical properties resulting from the distance along the river.

Suggested Citation

  • Wang, Xiquan & Zhang, Hongyuan & Zhang, Zhizhong & Zhang, Chenping & Zhang, Kai & Pang, Huancheng & Bell, Stephen M. & Li, Yuyi & Chen, Ji, 2023. "Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000495
    DOI: 10.1016/j.agwat.2023.108184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xuemin & Zhang, Chenglong & Huo, Zailin & Adeloye, Adebayo J., 2020. "A sustainable irrigation water management framework coupling water-salt processes simulation and uncertain optimization in an arid area," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Wang, S.J. & Chen, Q. & Li, Y. & Zhuo, Y.Q. & Xu, L.Z., 2017. "Research on saline-alkali soil amelioration with FGD gypsum," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 82-92.
    3. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    4. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    5. Jin, L. & Whitehead, P. G. & Bussi, G. & Hirpa, F. & Taye, Meron Teferi & Abebe, Y. & Charles, K., 2021. "Natural and anthropogenic sources of salinity in the Awash River and Lake Beseka (Ethiopia): modelling impacts of climate change and lake-river interactions," Papers published in Journals (Open Access), International Water Management Institute, pages 1-36:100865.
    6. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Liu & Wenhao Feng & Hongyuan Zhang & Fangdi Chang & Jing Wang & Yuyi Li & Huancheng Pang, 2023. "If Sand Interlayer Acts Better than Straw Interlayer for Saline Soil Amelioration? A Three-Year Field Experiment," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    2. Zihao Wu & Yiyun Chen & Yuanli Zhu & Xiangyang Feng & Jianxiong Ou & Guie Li & Zhaomin Tong & Qingwu Yan, 2023. "Mapping Soil Organic Carbon in Floodplain Farmland: Implications of Effective Range of Environmental Variables," Land, MDPI, vol. 12(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    2. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    3. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Li, Xiaobin & Kang, Yaohu & Wan, Shuqin & Chen, Xiulong & Liu, Shiping & Xu, Jiachong, 2016. "Response of a salt-sensitive plant to processes of soil reclamation in two saline–sodic, coastal soils using drip irrigation with saline water," Agricultural Water Management, Elsevier, vol. 164(P2), pages 223-234.
    5. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    6. Li, Xiaobin & Wan, Shuqin & Kang, Yaohu & Chen, Xiulong & Chu, Linlin, 2016. "Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents," Agricultural Water Management, Elsevier, vol. 163(C), pages 180-189.
    7. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    9. Feng, Di & Ning, Songrui & Sun, Xiaoan & Zhang, Jingmin & Zhu, Haiyan & Tang, Jingchun & Xu, Youxin, 2023. "Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water," Agricultural Water Management, Elsevier, vol. 281(C).
    10. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    12. Xiuping Wang & Zhizhong Xue & Xuelin Lu & Yahui Liu & Guangming Liu & Zhe Wu, 2019. "Salt leaching of heavy coastal saline silty soil by controlling the soil matric potential," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 132-137.
    13. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    15. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    16. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Zhang, Tao & Wang, Ting & Liu, KS & Wang, Lixue & Wang, Kun & Zhou, Yan, 2015. "Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses," Agricultural Water Management, Elsevier, vol. 159(C), pages 115-122.
    18. Zhang, Xiaoxing & Guo, Ping & Guo, Wenxian & Gong, Juan & Luo, Biao, 2021. "Optimization towards sustainable development in shallow groundwater area and risk analysis," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Yifu Zhang & Wancheng Wang & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Cattle Manure Application and Combined Straw Mulching Enhance Maize ( Zea mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils," Agriculture, MDPI, vol. 11(8), pages 1-14, August.
    20. Zengming Ke & Xiaoli Liu & Lihui Ma & Feng Jiao & Zhanli Wang, 2023. "Spatial Distribution of Soil Water and Salt in a Slightly Salinized Farmland," Sustainability, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.