IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p179-d1332277.html
   My bibliography  Save this article

Carbon and Nitrogen Stocks in Agricultural Soils under Different Natural Conditions and Management in Slovakia

Author

Listed:
  • Miriam Kizeková

    (Grassland and Mountain Agriculture Research Institute, National Agricultural and Food Centre, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia)

  • Radoslava Kanianska

    (Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, 974 01 Banská Bystrica, Slovakia)

  • Ľubica Jančová

    (Grassland and Mountain Agriculture Research Institute, National Agricultural and Food Centre, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia)

  • Jozef Čunderlík

    (Grassland and Mountain Agriculture Research Institute, National Agricultural and Food Centre, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia)

  • Zuzana Dugátová

    (Grassland and Mountain Agriculture Research Institute, National Agricultural and Food Centre, Mládežnícka 36, 974 21 Banská Bystrica, Slovakia)

Abstract

Soil is a natural capital which supplies valuable ecosystem services including carbon and nitrogen storage. Agroecosystems play an important role in soil organic carbon (SOC) and soil total nitrogen (NT) accumulation. The aim of this study was to analyse SOC stock (SOCS) and NT stock (NTS) in relation to land use (arable land-AL, permanent grasslands-PG), management, soil depth, and selected soil properties of six soil subtypes (Rendzic Leptosol—LPrz, Dystric Cambisol—CMdy, Stagnic Cambisol—CMst, Haplic Fluvisol—FLha, Gleyic Fluvisol—FLgl, Haplic Chernozem—CHha) which are the most widespread in Slovakia. SOCS for a 50 cm deep soil profile ranged from 161 t.ha −1 in CHha to 59 t.ha −1 in FLgl in grasslands, and in arable lands from 111 t.ha −1 in CHha to 38 t.ha −1 in CMst. In grasslands, FLs and CMst showed the significantly lowest SOCS and NTS in comparison to CMdy, LPrz, and CHha. The mean soil NT content in arable land and grasslands was 2.21 g.kg −1 and 2.82 g.kg −1 , respectively. ANOVA showed that soil subtype, land use, and site have significantly affected SOCS but not NTS. The correlation analysis revealed correlations between SOCS and NTS. SOCS was also correlated with C:N, pH, P, and K. This study should help to encourage practices to maintain soil C and soil properties and to ensure the sustainability of the functions of many soil types in Slovakia.

Suggested Citation

  • Miriam Kizeková & Radoslava Kanianska & Ľubica Jančová & Jozef Čunderlík & Zuzana Dugátová, 2024. "Carbon and Nitrogen Stocks in Agricultural Soils under Different Natural Conditions and Management in Slovakia," Land, MDPI, vol. 13(2), pages 1-17, February.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:179-:d:1332277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kragt, Marit E. & Pannell, David J. & Robertson, Michael J. & Thamo, Tas, 2012. "Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia," Agricultural Systems, Elsevier, vol. 112(C), pages 27-37.
    2. Farhana Bibi & Azizur Rahman, 2023. "An Overview of Climate Change Impacts on Agriculture and Their Mitigation Strategies," Agriculture, MDPI, vol. 13(8), pages 1-15, July.
    3. Fevzi AKBAS & Hikmet GUNAL & Nurullah ACIR, 2017. "Spatial variability of soil potassium and its relationship to land use and parent material," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(4), pages 202-211.
    4. Jozef Vilček & Štefan Koco, 2018. "Integrated index of agricultural soil quality in Slovakia," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 68-76, November.
    5. Z. Y. Yuan & Han Y. H. Chen, 2015. "Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes," Nature Climate Change, Nature, vol. 5(5), pages 465-469, May.
    6. Erika Tobiašová & Joanna Lemanowicz & Bożena Dębska & Martina Kunkelová & Juraj Sakáč, 2023. "The Effect of Reduced and Conventional Tillage Systems on Soil Aggregates and Organic Carbon Parameters of Different Soil Types," Agriculture, MDPI, vol. 13(4), pages 1-12, March.
    7. Gabriela Barančíková & Tibor Liptaj & Nadežda Prónayová, 2007. "Phosphorus fractions in arable and mountain soils and their humic acids," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 2(4), pages 141-148.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. András Csótó & György Tóth & Péter Riczu & Andrea Zabiák & Vera Tarjányi & Erzsébet Fekete & Levente Karaffa & Erzsébet Sándor, 2024. "Foliar Spraying with Endophytic Trichoderma Biostimulant Increases Drought Resilience of Maize and Sunflower," Agriculture, MDPI, vol. 14(12), pages 1-12, December.
    2. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    3. Patricio Vladimir Méndez-Zambrano & Luis Patricio Tierra Pérez & Rogelio Estalin Ureta Valdez & Ángel Patricio Flores Orozco, 2023. "Technological Innovations for Agricultural Production from an Environmental Perspective: A Review," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    4. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    5. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Kragt, M.E. & Pannell, D.J. & McVittie, A. & Stott, A.W. & Vosough Ahmadi, B. & Wilson, P., 2016. "Improving interdisciplinary collaboration in bio-economic modelling for agricultural systems," Agricultural Systems, Elsevier, vol. 143(C), pages 217-224.
    7. Christelle Yèba Akpo & Cristina Bianca Pocol & Maria-Georgeta Moldovan & Denis Acclassato Houensou, 2024. "Land Access Modes and Agricultural Productivity in Benin," Agriculture, MDPI, vol. 14(10), pages 1-20, October.
    8. Štefan Koco & Jozef Vilček & Stanislav Torma & Eva Michaeli & Vladimír Solár, 2020. "Optimising Potato ( Solanum tuberosum L.) Cultivation by Selection of Proper Soils," Agriculture, MDPI, vol. 10(5), pages 1-10, May.
    9. Radoslava Kanianska & Miriam Kizeková & Ľubica Jančová & Jozef Čunderlík & Zuzana Dugátová, 2024. "Effect of Soil Erosion on Soil and Plant Properties with a Consequence on Related Ecosystem Services," Sustainability, MDPI, vol. 16(16), pages 1-18, August.
    10. José A. Sillero-Medina & Paloma Hueso-González & José D. Ruiz-Sinoga, 2020. "Differences in the Soil Quality Index for Two Contrasting Mediterranean Landscapes in Southern Spain," Land, MDPI, vol. 9(11), pages 1-15, October.
    11. Tas Thamo & David J. Pannell & Marit E. Kragt & Michael J. Robertson & Maksym Polyakov, 2017. "Dynamics and the economics of carbon sequestration: common oversights and their implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1095-1111, October.
    12. Xiuquan Huang & Xiaocang Xu & Qingqing Wang & Lu Zhang & Xin Gao & Linhong Chen, 2019. "Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997–2016," IJERPH, MDPI, vol. 16(17), pages 1-15, August.
    13. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    14. Di Tian & Zhengbing Yan & Bernhard Schmid & Jens Kattge & Jingyun Fang & Benjamin D. Stocker, 2024. "Environmental versus phylogenetic controls on leaf nitrogen and phosphorous concentrations in vascular plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Thamo, Tas & Kingwell, Ross S. & Pannell, David J., 2013. "Measurement of greenhouse gas emissions from agriculture: economic implications for policy and agricultural producers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 1-19.
    16. Danijel Jug & Irena Jug & Bojana Brozović & Srdjan Šeremešić & Željko Dolijanović & Jozsef Zsembeli & Apolka Ujj & Jana Marjanovic & Vladimir Smutny & Soňa Dušková & Lubomír Neudert & Milan Macák & Ed, 2025. "Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe," Agriculture, MDPI, vol. 15(3), pages 1-31, January.
    17. Yibo Xu & Xiaohuang Liu & Lianrong Zhao & Jiufen Liu & Xiaofeng Zhao & Hongyu Li & Chao Wang & Honghui Zhao & Ran Wang & Xinping Luo & Liyuan Xing, 2024. "Prediction of Potential Suitability Areas for Ephedra sinica in the Five Northwestern Provinces of China Under Climate Change," Agriculture, MDPI, vol. 14(10), pages 1-18, October.
    18. Zixun Chen & Xuejun Liu & Xiaoqing Cui & Yaowen Han & Guoan Wang, 2021. "Changes in precipitation and atmospheric N deposition affect the correlation between N, P and K but not the coupling of water-element in Haloxylon ammodendron," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-13, October.
    19. Lokuge, Nimanthika & Anders, Sven, 2022. "Carbon-Credit Systems in Agriculture: A Review of Literature," SPP Technical Papers, The School of Public Policy, University of Calgary, vol. 15(12), April.
    20. Xinyi Shen & Junwei Ma & Yuqian Li & Yijia Li & Xinghui Xia, 2022. "The Effects of Multiple Global Change Factors on Soil Nutrients across China: A Meta-Analysis," IJERPH, MDPI, vol. 19(22), pages 1-16, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:179-:d:1332277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.