IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3602-d1636048.html
   My bibliography  Save this article

Modeling Intervehicle Spacing for Safe and Sustainable Operations on Two-Lane Roads

Author

Listed:
  • Andrea Pompigna

    (Faculty of Technological & Innovation Sciences, Universitas Mercatorum, Piazza Mattei, 10, 00186 Rome, Italy)

  • Giuseppe Cantisani

    (Department of Civil, Constructional and Environmental Engineering, University of Rome La Sapienza, Via Eudossiana 18, 00184 Rome, Italy)

  • Raffaele Mauro

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Giulia Del Serrone

    (Department of Civil, Constructional and Environmental Engineering, University of Rome La Sapienza, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

This paper examines the essential role of intervehicle spacing on two-lane rural roads, highlighting its significance for traffic safety and management. Recent technological advancements have enabled the precise positioning of vehicles on highways through video recordings and image processing techniques. However, these systems are less applicable to rural roads due to the absence of extensive sensor networks. This study bridges this gap by proposing a simulation-based model to evaluate the probability density of intervehicle spacing under varying traffic conditions. The simulation model integrates macroscopic traffic flow theories with microscopic car following models, simulating intervehicle spacings over a considerable highway segment. Calibration and validation were conducted using data from a two-lane road in Northern Italy. The simulation results identify key characteristics of spacing distribution, including positive skewness (i.e., a longer tail toward higher values), high kurtosis (a peaked distribution with frequent extreme values), non-zero minimum values, and autocorrelation at high traffic densities (indicative of platooning behavior). The Pearson type III distribution was determined to be the most suitable fit for the experimental data. Thus, future research should focus on parameter estimation for the Pearson type III distribution to further understand intervehicle spacing under varying traffic conditions and to expand applications to various road types and traffic scenarios.

Suggested Citation

  • Andrea Pompigna & Giuseppe Cantisani & Raffaele Mauro & Giulia Del Serrone, 2025. "Modeling Intervehicle Spacing for Safe and Sustainable Operations on Two-Lane Roads," Sustainability, MDPI, vol. 17(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3602-:d:1636048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandle Chae & Youngho Kim, 2023. "Investigation of Following Vehicles’ Driving Patterns Using Spectral Analysis Techniques," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    2. Qiang Luo & Xiaodong Zang & Jie Yuan & Xinqiang Chen & Junheng Yang & Shubo Wu, 2020. "Research of Vehicle Rear-End Collision Model considering Multiple Factors," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, April.
    3. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    4. Raffaele Mauro & Andrea Pompigna, 2022. "A Statistically Based Model for the Characterization of Vehicle Interactions and Vehicle Platoons Formation on Two-Lane Roads," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    5. David Branston, 1976. "Models of Single Lane Time Headway Distributions," Transportation Science, INFORMS, vol. 10(2), pages 125-148, May.
    6. Walter, J.-C. & Barkema, G.T., 2015. "An introduction to Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 418(C), pages 78-87.
    7. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    3. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    4. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    5. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    6. Zhang, Xiaoyan & Jarrett, David F., 1997. "Stability analysis of the classical car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 441-462, November.
    7. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    8. Alireza Mostafizi & Haizhong Wang & Dan Cox & Lori A. Cramer & Shangjia Dong, 2017. "Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1347-1372, September.
    9. Kaufman, Arie, 1982. "Continuous simulation of a car-following equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 24(1), pages 88-94.
    10. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    11. R.E. Wilson & J.A. Ward, 2010. "Car-following models: fifty years of linear stability analysis -- a mathematical perspective," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(1), pages 3-18, July.
    12. Denos C. Gazis, 2002. "The Origins of Traffic Theory," Operations Research, INFORMS, vol. 50(1), pages 69-77, February.
    13. Piyush Dhawankar & Prashant Agrawal & Bilal Abderezzak & Omprakash Kaiwartya & Krishna Busawon & Maria Simona Raboacă, 2021. "Design and Numerical Implementation of V2X Control Architecture for Autonomous Driving Vehicles," Mathematics, MDPI, vol. 9(14), pages 1-24, July.
    14. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    15. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2024. "A self-adaptive IDM car-following strategy considering asymptotic stability and damping characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Meng, Y.C. & Lin, Z.Y. & Li, X.Y. & Qiao, D.L. & Guo, M.M. & Zhang, P., 2022. "A semi-discrete model of traffic flow in correspondence with a continuum model under Lagrange coordinate system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    17. Farhi, Nadir, 2024. "Piecewise-linear car-following with heterogeneous agent dynamics: Consensus and emerging collective behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    18. Nakata, Makoto & Yamauchi, Atsuo & Tanimoto, Jun & Hagishima, Aya, 2010. "Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5353-5361.
    19. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    20. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3602-:d:1636048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.