IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v547y2020ics0378437119321296.html
   My bibliography  Save this article

A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles

Author

Listed:
  • Sun, Lu
  • Jafaripournimchahi, Ammar
  • Kornhauser, Alain
  • Hu, Wushen

Abstract

This paper proposes a new car-following model by considering driver memory and derives a corresponding macroscopic continuum traffic flow model, in which the wrong-way travel phenomenon is not going to occur. We reveal that considering driver memory expressed in term of past traffic condition and headway leads to viscosity parameter in macroscopic traffic flow equation. The viscosity parameter is proportional to a unique quantity, which is featured with two parameters: the delay time of vehicle motion and the kinematic wave velocity at jam density. Linear and nonlinear stability analysis using the method of perturbation is carried out to study traffic characteristics. We showed that macroscopic models derived from microscopic models are more realistic and meaningful than those coming directly from an analogy of Navier–Stokes equations.

Suggested Citation

  • Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
  • Handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437119321296
    DOI: 10.1016/j.physa.2019.123829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321296
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    2. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    3. Ge, H.X. & Cheng, R.J. & Li, Z.P., 2008. "Two velocity difference model for a car following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5239-5245.
    4. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    5. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    6. D. Helbing, 2009. "Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(4), pages 539-548, June.
    7. D. J. Buckley, 1968. "A Semi-Poisson Model of Traffic Flow," Transportation Science, INFORMS, vol. 2(2), pages 107-133, May.
    8. David Branston, 1976. "Models of Single Lane Time Headway Distributions," Transportation Science, INFORMS, vol. 10(2), pages 125-148, May.
    9. Michalopoulos, Panos G. & Beskos, Dimitrios E. & Lin, Jaw-Kuan, 1984. "Analysis of interrupted traffic flow by finite difference methods," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 409-421.
    10. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    11. Robert Herman & Elliott W. Montroll & Renfrey B. Potts & Richard W. Rothery, 1959. "Traffic Dynamics: Analysis of Stability in Car Following," Operations Research, INFORMS, vol. 7(1), pages 86-106, February.
    12. Wong, G. C. K. & Wong, S. C., 2002. "A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 827-841, November.
    13. Helbing, Dirk, 1996. "Derivation and empirical validation of a refined traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 253-282.
    14. Gentry Lee, 1966. "A Generalization of Linear Car-Following Theory," Operations Research, INFORMS, vol. 14(4), pages 595-606, August.
    15. Zhang, H. M., 2003. "Driver memory, traffic viscosity and a viscous vehicular traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 27-41, January.
    16. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    17. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    18. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    19. Davis, L.C., 2003. "Modifications of the optimal velocity traffic model to include delay due to driver reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 557-567.
    20. I. Prigogine & F. C. Andrews, 1960. "A Boltzmann-Like Approach for Traffic Flow," Operations Research, INFORMS, vol. 8(6), pages 789-797, December.
    21. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    22. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    23. Sun, Lu & Yang, Jun & Mahmassani, Hani, 2008. "Travel time estimation based on piecewise truncated quadratic speed trajectory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 173-186, January.
    24. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2010. "Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 983-1000, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    3. Zhai, Cong & Wu, Weitiao, 2022. "A continuum model considering the uncertain velocity of preceding vehicles on gradient highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    4. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Ammar Jafaripournimchahi & Yingfeng Cai & Hai Wang & Lu Sun, 2022. "Environmental Analyses of Delayed-Feedback Control Effects in Continuum-Traffic Flow of Autonomous Vehicles," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    6. Hongxia Ge & Siteng Li & Chunyue Yan, 2021. "An Extended Car-Following Model Based on Visual Angle and Electronic Throttle Effect," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    7. Kang, Yuxiao & Mao, Shuhua & Zhang, Yonghong, 2022. "Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 149-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    2. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    3. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    4. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    6. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    7. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    8. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    9. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    10. Pei, Xin & Pan, Yan & Wang, Haixin & Wong, S.C. & Choi, Keechoo, 2016. "Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 311-323.
    11. Jiang, Rui & Wu, Qing-Song, 2003. "Study on propagation speed of small disturbance from a car-following approach," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 85-99, January.
    12. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    14. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    15. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    16. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    17. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    18. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    19. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    20. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437119321296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.