IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3518-d1634673.html
   My bibliography  Save this article

Analysis of the Sources of Soil Heavy Metals in Geological High-Background Areas at a Large Spatial Scale

Author

Listed:
  • Zhiheng Qin

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100091, China
    Rural Ecological Environment Monitoring Technology Department, Technical Centre for Soil, Agriculture and RuraI Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China)

  • Li Li

    (Department of Agricultural Land Ecological Environment Supervision Technology, Technical Centre for Soil, Agriculture and RuraI Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China)

  • Xiuqin Wu

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100091, China)

Abstract

Determining the sources of heavy metals in soil on a large scale is of great significance for improving soil environmental management, especially in regions where the sources of soil heavy metals are complex. We analyzed the sources and correlations of soil heavy metals in southwestern China and counted the content of five typical heavy metal elements by collecting soil samples from 309 typical locations. The risk of soil heavy metal pollution in the study area is relatively high, with cadmium posing the highest risk. The risk of soil heavy metal pollution in areas with high and medium development levels of carbonate rocks is significantly higher than that in low development-level carbonate rock areas and non-carbonate regions. In medium-carbonate development regions, the intensity of human activities exceeds that in high-carbonate development regions, resulting in a more consistent risk of soil heavy metal pollution between the two zones. In high-carbonate regions, the main sources of heavy metals in soil are predominantly natural, while in moderate regions, there is a mixed influence of both anthropogenic and natural sources. In low regions, both sources are minimal. There are also notable differences within the non-carbonate region, with the southeastern area exhibiting much higher values than the other regions, which is related to the intensity of human activity being significantly greater than in other areas. Among these, polluting enterprises that discharge heavy metals are the most significant contributors. This provides support for understanding the spatial differences in soil heavy metals and their main influencing factors at the national or regional level.

Suggested Citation

  • Zhiheng Qin & Li Li & Xiuqin Wu, 2025. "Analysis of the Sources of Soil Heavy Metals in Geological High-Background Areas at a Large Spatial Scale," Sustainability, MDPI, vol. 17(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3518-:d:1634673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    3. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    4. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    5. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    6. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    7. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    8. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    9. Maradin Dario & Cerović Ljerka & Mjeda Trina, 2017. "Economic Effects of Renewable Energy Technologies," Naše gospodarstvo/Our economy, Sciendo, vol. 63(2), pages 49-59, June.
    10. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    11. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    12. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    13. Ting Li & Wei Li & Ziyang Lou & Luochun Wang, 2024. "Comprehensive Analysis of Industrial Solid-Waste-to-Energy by Refuse-Derived Fuel Technology: A Case Study in Shanghai," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    14. Fu, Z.H. & Xie, Y.L. & Li, W. & Lu, W.T. & Guo, H.C., 2017. "An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China," Energy, Elsevier, vol. 126(C), pages 165-178.
    15. Shitong Yu & Huijuan Dong, 2020. "Uncover Cost-Benefit Disparity of Municipal Solid Waste Incineration in Chinese Provinces," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    16. Hao Liu & Lin Ma, 2020. "Spatial Pattern and Effects of Urban Coordinated Development in China’s Urbanization," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    17. Christos Vlachokostas, 2020. "Closing the Loop Between Energy Production and Waste Management: A Conceptual Approach Towards Sustainable Development," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    18. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    19. Jun Li & Lixian Wang & Yong Chi & Zhaozhi Zhou & Yuanjun Tang & Hui Zhang, 2021. "Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective," IJERPH, MDPI, vol. 18(19), pages 1-16, October.
    20. Chen, Yingchao & Feng, Lianyong & Wang, Jianliang & Höök, Mikael, 2017. "Emergy-based energy return on investment method for evaluating energy exploitation," Energy, Elsevier, vol. 128(C), pages 540-549.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3518-:d:1634673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.