IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3393-d1632290.html
   My bibliography  Save this article

A Whole-Stand Model for Estimating the Productivity of Uneven-Aged Temperate Pine-Oak Forests in Mexico

Author

Listed:
  • María Guadalupe Nava-Miranda

    (Escuela Politécnica Superior de Ingeniería, Campus Terra, Universidad de Santiago de Compostela, 27002 Lugo, Spain
    Colegio de Ciencias y Humanidades, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Juan Gabriel Álvarez-González

    (Escuela Politécnica Superior de Ingeniería, Campus Terra, Universidad de Santiago de Compostela, 27002 Lugo, Spain)

  • José Javier Corral-Rivas

    (Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Daniel José Vega-Nieva

    (Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Jaime Briseño-Reyes

    (Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango 34120, Mexico)

  • Jesús Aguirre-Gutiérrez

    (Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
    Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, OX1 3QY, UK)

  • Klaus von Gadow

    (Faculty of Forestry and Forest Ecology, University of Göttingen, 37077 Göttingen, Germany
    Department of Forestry and Wood Science, Faculty of AgriSciences, University of Stellenbosch, Stellenbosch 7602, South Africa)

Abstract

This study presents a model for estimating forest productivity based on a sample of 2048 permanent field plots covering a wide range of growing sites in Mexico. Our state-space approach assumes that the growth behavior of any stand over time can be estimated on the basis of its current state, defined by the dominant height ( H ), number of trees per hectare ( N ), and stand basal area ( BA ). We used transition functions to estimate the change in states as a function of the current state. We also present transition functions for the change in stand volume ( V ) and total above-ground biomass ( AGB ). The first transition function relates dominant height to dominant diameter by using the guide-curve method to estimate site form. The transition function for N consists of two models, one for estimating natural mortality and the other for estimating recruitment. These models were developed in two steps: in the first step, the logistic regression and maximum likelihood approach were used to estimate the probability of the occurrence of mortality or recruitment, and in the second step, the rate of change associated with each event was modeled when mortality or recruitment was assumed to have occurred as a result of the first step. The remaining three transition functions ( BA , V, and AGB ) were fitted simultaneously to account for possible correlations between errors. The model estimating total above-ground biomass ( AGB ), which can be considered a state variable that summarizes the performance of the whole model, explained more than 97% of the observed variability, with a root mean square error value of 10.57 Mg/ha.

Suggested Citation

  • María Guadalupe Nava-Miranda & Juan Gabriel Álvarez-González & José Javier Corral-Rivas & Daniel José Vega-Nieva & Jaime Briseño-Reyes & Jesús Aguirre-Gutiérrez & Klaus von Gadow, 2025. "A Whole-Stand Model for Estimating the Productivity of Uneven-Aged Temperate Pine-Oak Forests in Mexico," Sustainability, MDPI, vol. 17(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3393-:d:1632290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Zhang & Ülo Niinemets & Justin Sheffield & Jeremy W. Lichstein, 2018. "Shifts in tree functional composition amplify the response of forest biomass to climate," Nature, Nature, vol. 556(7699), pages 99-102, April.
    2. Jonathan M. Chase & Shane A. Blowes & Tiffany M. Knight & Katharina Gerstner & Felix May, 2020. "Ecosystem decay exacerbates biodiversity loss with habitat loss," Nature, Nature, vol. 584(7820), pages 238-243, August.
    3. Geijzendorffer, Ilse R. & Cohen-Shacham, Emmanuelle & Cord, Anna F. & Cramer, Wolfgang & Guerra, Carlos & Martín-López, Berta, 2017. "Ecosystem services in global sustainability policies," Environmental Science & Policy, Elsevier, vol. 74(C), pages 40-48.
    4. Ryan P. Powers & Walter Jetz, 2019. "Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios," Nature Climate Change, Nature, vol. 9(4), pages 323-329, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chen-Fa & Wang, Hsiao-Hsuan & Chen, Szu-Hung & Trac, Luu Van Thong, 2024. "Assessing the efficiency of bird habitat conservation strategies in farmland ecosystems," Ecological Modelling, Elsevier, vol. 492(C).
    2. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    6. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    8. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    9. Ahammad, Ronju & Stacey, Natasha & Sunderland, Terry, 2021. "Analysis of forest-related policies for supporting ecosystem services-based forest management in Bangladesh," Ecosystem Services, Elsevier, vol. 48(C).
    10. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    11. James P. Herrera & Jean Yves Rabezara & Ny Anjara Fifi Ravelomanantsoa & Miranda Metz & Courtni France & Ajilé Owens & Michelle Pender & Charles L. Nunn & Randall A. Kramer, 2021. "Food insecurity related to agricultural practices and household characteristics in rural communities of northeast Madagascar," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1393-1405, December.
    12. Daphne Condon & Tyler A. Scott & Adam B. Smith & Toni Lyn Morelli & Uzma Ashraf & Alex Mojica & Hrithika Chittanuru & Rachel Luu & Rae Bear & Rebecca R. Hernandez, 2025. "Practitioners’ perceived risks to biodiversity from renewable energy expansion through 2050," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-15, December.
    13. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    14. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Christianson, Anne B. & Montgomery, Rebecca & Fleischman, Forrest & Nelson, Kristen C., 2022. "Exploring wildlife disservices and conservation in the context of ecosystem-based adaptation: A case study in the Mt. Elgon region, Uganda," Ecosystem Services, Elsevier, vol. 57(C).
    16. Elaine Aparecida Rodrigues & Maurício Lamano Ferreira & Amanda Rodrigues de Carvalho & José Oscar William Vega Bustillos & Rodrigo Antonio Braga Moraes Victor & Marcelo Gomes Sodré & Delvonei Alves de, 2022. "Land, Water, and Climate Issues in Large and Megacities under the Lens of Nuclear Science: An Approach for Achieving Sustainable Development Goal (SDG11)," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    17. Luis U. Castruita-Esparza & Raúl Narváez-Flores & Mélida Gutiérrez & Aldo S. Mojica-Guerrero & Gerónimo Quiñones-Barraza & Javier Hernández-Salas, 2024. "Structure and Carbon Capture of a Temperate Mixed Forest across Altitudinal Gradients in Northern Mexico," Land, MDPI, vol. 13(4), pages 1-17, April.
    18. Gabriela Alves-Ferreira & Neander M. Heming & Daniela Talora & Timothy H. Keitt & Mirco Solé & Kelly R. Zamudio, 2025. "Climate change is projected to shrink phylogenetic endemism of Neotropical frogs," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Vasiliev, Denis & Hazlett, Richard W., 2025. "Envisaging nature-based solutions as designed ecosystems in the changing world," Land Use Policy, Elsevier, vol. 150(C).
    20. Schmidt, Stefan & Seppelt, Ralf, 2018. "Information content of global ecosystem service databases and their suitability for decision advice," Ecosystem Services, Elsevier, vol. 32(PA), pages 22-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3393-:d:1632290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.