IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3307-d1630339.html
   My bibliography  Save this article

Development and Analysis of Easy-to-Implement Green Retrofit Technologies for Windows to Reduce Heating Energy Use in Older Residential Buildings

Author

Listed:
  • Sukjoon Oh

    (Department of Building Energy Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea)

  • Hosang Ahn

    (Department of Building Energy Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea)

  • Minjung Bae

    (Department of Building Energy Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea)

  • Jaesik Kang

    (Department of Building Energy Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea)

Abstract

Green remodeling and retrofitting are effective strategies for enhancing the sustainability of existing buildings. While green remodeling involves significant structural modifications, green retrofitting typically focuses on improving energy efficiency and reducing environmental impact. However, easy-to-implement green retrofit technologies can be particularly valuable for low-income communities, offering a more affordable way to upgrade residences without extensive renovations. This paper analyzed the effectiveness of newly developed, easy-to-implement green retrofit technologies for windows in reducing heating energy use and greenhouse gas emissions. We conducted experiments using secondary glazing and windproof materials to enhance the thermal insulation and air-tightness performance of a residential building. Subsequently, we simulated the effectiveness of these green retrofit technologies under various conditions for residential buildings. In addition, we analyzed utility bills using data collected from residents. Our findings demonstrated an average reduction of 10–15% in heating energy consumption through the implementation of these green retrofit technologies for windows in older residential buildings.

Suggested Citation

  • Sukjoon Oh & Hosang Ahn & Minjung Bae & Jaesik Kang, 2025. "Development and Analysis of Easy-to-Implement Green Retrofit Technologies for Windows to Reduce Heating Energy Use in Older Residential Buildings," Sustainability, MDPI, vol. 17(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3307-:d:1630339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dineen, D. & Ó Gallachóir, B.P., 2017. "Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector," Energy, Elsevier, vol. 121(C), pages 126-134.
    2. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    3. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Xie & Yisheng Liu, 2022. "Tripartite Evolutionary Game Analysis of Stakeholder Decision-Making Behavior in Energy-Efficient Retrofitting of Office Buildings," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    2. Yihong Wang & Da Chen & Pingye Tian, 2022. "Research on the Impact Path of the Sustainable Development of Green Buildings: Evidence from China," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    3. U. G. D. Madushika & Thanuja Ramachandra & Gayani Karunasena & P. A. D. S. Udakara, 2023. "Energy Retrofitting Technologies of Buildings: A Review-Based Assessment," Energies, MDPI, vol. 16(13), pages 1-16, June.
    4. Liu, Yang & Pedrycz, Witold & Deveci, Muhammet & Chen, Zhen-Song, 2024. "BIM-based building performance assessment of green buildings - A case study from China," Applied Energy, Elsevier, vol. 373(C).
    5. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    6. Linyan Chen & Xin Gao & Shitao Gong & Zhou Li, 2020. "Regionalization of Green Building Development in China: A Comprehensive Evaluation Model Based on the Catastrophe Progression Method," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    7. Mojtaba Ashour & Amir Mahdiyar & Syarmila Hany Haron, 2021. "A Comprehensive Review of Deterrents to the Practice of Sustainable Interior Architecture and Design," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    9. Zihan Zhang & Junkang Song & Wanjiang Wang, 2023. "Study on the Behavior Strategy of the Subject of Low-Carbon Retrofit of Residential Buildings Based on Tripartite Evolutionary Game," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    10. Li, Qianwen & Qian, Tingyu & Zhang, Xufeng & Long, Ruyin & Chen, Hong & Huang, Han & Liu, Lei & Zhu, Licai & Jiang, Huikang & Zhu, Hanyi, 2023. "How does stakeholder loss aversion affect the promotion of green housing?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 647-668.
    11. Xiaolong Gan & Kangkang Yan & Kexin Xie & Yongtao Tan, 2023. "The policy trajectory of green building development in China: A sequential and network analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2979-2996, August.
    12. Yupei Lai & Yutong Li & Xinyi Feng & Tao Ma, 2022. "Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions," Energy & Environment, , vol. 33(2), pages 332-353, March.
    13. Weihao Huang & Qifan Xu, 2024. "Sustainable-Driven Renovation of Existing Residential Buildings in China: A Systematic Exploration Based on Review and Solution Approaches," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    14. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    15. Li, Qianwen & Qian, Tingyu & Wang, Jiaqi & Long, Ruyin & Chen, Hong & Sun, Chuanwang, 2023. "Social “win-win” promotion of green housing under the four-subject evolutionary game," Energy Economics, Elsevier, vol. 127(PA).
    16. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    17. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    18. Feng, Xinzhen & Du, Gang, 2023. "Does financial knowledge contribute to the upgrading of the resident's consumption?," Finance Research Letters, Elsevier, vol. 58(PC).
    19. Ying Han & Lei Xie, 2025. "Sustainable Governance of Digital Platform Ecosystem: A Life Cycle Perspective Through Multiple Governance Parties," Sustainability, MDPI, vol. 17(8), pages 1-24, April.
    20. Chenfei Liu & Stephen Sharples & Haniyeh Mohammadpourkarbasi, 2021. "Evaluating Insulation, Glazing and Airtightness Options for Passivhaus EnerPHit Retrofitting of a Dwelling in China’s Hot Summer–Cold Winter Climate Region," Energies, MDPI, vol. 14(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3307-:d:1630339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.