IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3003-d1622279.html
   My bibliography  Save this article

Sustainable Recycling of TiO 2 Nanoparticles with High Photocatalytic Performance from Spent Selective Catalytic Reduction Catalysts

Author

Listed:
  • Zhaoming Lu

    (School of Energy and Chemical Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China)

  • Xiaojing Xi

    (School of Energy and Chemical Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China)

  • Yanling Yang

    (School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China)

  • Wenjie Tian

    (School of Energy and Chemical Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China)

  • Bin Xu

    (Luoyang Xinhai Environmental Protection Technology Co., Ltd., Luoyang 471000, China)

  • Hua-Jun Chen

    (School of Energy and Chemical Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China)

Abstract

In this work, a sustainable approach to reclaiming high-value anatase/rutile TiO 2 nanoparticles from deactivated or used selective catalytic reduction (SCR) catalysts is demonstrated using a composite flux (NaOH/Na 2 CO 3 ) through an efficient sintering and subsequent leaching methodology. This method directly addresses the urgent need for circular economy strategies in industrial waste management. Sintering experiments revealed that while NaOH enhanced the separation efficiency of V 2 O 5 and SiO 2 , it led to agglomerated products, hindering TiO 2 recovery. In contrast, Na 2 CO 3 enabled the production of powdery sintered residues, facilitating the complete separation of anatase/rutile TiO 2 nanoparticles, as confirmed by XRD. By optimizing the sintering-leaching conditions, this method achieves near-total recovery of TiO 2 with retained photocatalytic performance, ensuring its suitability for reuse in applications such as air/water purification or renewable energy systems. This study advances sustainability by repurposing industrial waste into high-performance materials, reducing the energy and resource demands associated with conventional TiO 2 synthesis, and preventing hazardous material leakage into ecosystems. The scalable, low-complexity process aligns with global sustainability goals, including responsible consumption (SDG 12), climate action (SDG 13), and industrial innovation (SDG 9), offering a blueprint for transforming waste streams into valuable resources for a greener economy.

Suggested Citation

  • Zhaoming Lu & Xiaojing Xi & Yanling Yang & Wenjie Tian & Bin Xu & Hua-Jun Chen, 2025. "Sustainable Recycling of TiO 2 Nanoparticles with High Photocatalytic Performance from Spent Selective Catalytic Reduction Catalysts," Sustainability, MDPI, vol. 17(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3003-:d:1622279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Zengying & Ma, Xiaoqian & Lin, Hai & Tang, Yuting, 2011. "The energy consumption and environmental impacts of SCR technology in China," Applied Energy, Elsevier, vol. 88(4), pages 1120-1129, April.
    2. Diego Flores-Ruiz & Marco Montoya-Alcaraz & Leonel García & Manuel Gutiérrez & Julio Calderón-Ramírez, 2025. "Mitigation Strategies Based on Life Cycle Assessment for Carbon Dioxide Reduction in Asphalt Pavements: Systematic Review," Sustainability, MDPI, vol. 17(2), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    2. Bai, Y. & Zhou, D.Q. & Zhou, P., 2012. "Modelling and analysis of oil import tariff and stockpile policies for coping with supply disruptions," Applied Energy, Elsevier, vol. 97(C), pages 84-90.
    3. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    4. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    5. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    6. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    7. Mianqiang Xue & Bin-Le Lin & Kiyotaka Tsunemi & Kimitaka Minami & Tetsuya Nanba & Tohru Kawamoto, 2021. "Life Cycle Assessment of Nitrogen Circular Economy-Based NO x Treatment Technology," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    8. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    9. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    10. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    11. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    12. Dong, Jun & Jeswani, Harish Kumar & Nzihou, Ange & Azapagic, Adisa, 2020. "The environmental cost of recovering energy from municipal solid waste," Applied Energy, Elsevier, vol. 267(C).
    13. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).
    14. Si, Tong & Wang, Chunbo & Yan, Xuenan & Zhang, Yue & Ren, Yujie & Hu, Jian & Anthony, Edward J., 2019. "Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: From lab scale to pilot scale," Applied Energy, Elsevier, vol. 242(C), pages 1528-1538.
    15. Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
    16. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    17. Ma, Teng & Takeuchi, Kenji, 2017. "Technology choice for reducing NOx emissions: An empirical study of Chinese power plants," Energy Policy, Elsevier, vol. 102(C), pages 362-376.
    18. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    19. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    20. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3003-:d:1622279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.