IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9200-d1773332.html
   My bibliography  Save this article

Hybrid Wind Power Forecasting for Turbine Clusters: Integrating Spatiotemporal WGANs with Extreme Missing-Data Resilience

Author

Listed:
  • Hongsheng Su

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yuwei Du

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yulong Che

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Dan Li

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Wenyao Su

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

The global pursuit of sustainable development amplifies renewable energy’s strategic importance, positioning wind power as a vital modern grid component. Accurate wind forecasting is essential to counter inherent volatility, enabling robust grid operations, security protocols, and optimization strategies. Such predictive precision directly governs wind energy systems’ stability and sustainability. This research introduces a novel spatio-temporal hybrid model integrating convolutional neural networks (CNN), bidirectional long short-term memory (BiLSTM), and graph convolutional networks (GCN) to extract temporal patterns and meteorological dynamics (wind speed, direction, temperature) across 134 wind turbines. Building upon conventional methods, our architecture captures turbine spatio-temporal correlations while assimilating multivariate meteorological characteristics. Addressing data integrity compromises from equipment failures and extreme weather-which undermine data-driven models-we implement Wasserstein GAN (WGAN) for generative missing-value interpolation. Validation across severe data loss scenarios (30–90% missing values) demonstrates the model’s enhanced predictive capacity. Rigorous benchmarking confirms significant accuracy improvements and reduced forecasting errors.

Suggested Citation

  • Hongsheng Su & Yuwei Du & Yulong Che & Dan Li & Wenyao Su, 2025. "Hybrid Wind Power Forecasting for Turbine Clusters: Integrating Spatiotemporal WGANs with Extreme Missing-Data Resilience," Sustainability, MDPI, vol. 17(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9200-:d:1773332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    4. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    5. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    6. Bashir, Tasarruf & Wang, Huifang & Tahir, Mustafa & Zhang, Yixiang, 2025. "Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models," Renewable Energy, Elsevier, vol. 239(C).
    7. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    2. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    3. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    4. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    5. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    6. Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
    7. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    8. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    9. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    10. Cheng, Junhao & Luo, Xing & Jin, Zhi, 2024. "Integrating domain knowledge into transformer for short-term wind power forecasting," Energy, Elsevier, vol. 312(C).
    11. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    12. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    13. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    14. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
    15. Gao, Jiaxin & Cheng, Yuanqi & Zhang, Dongxiao & Chen, Yuntian, 2025. "Physics-constrained wind power forecasting aligned with probability distributions for noise-resilient deep learning," Applied Energy, Elsevier, vol. 383(C).
    16. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    17. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    18. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    19. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    20. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9200-:d:1773332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.