IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8773-d1761666.html
   My bibliography  Save this article

Design and Implementation of a Small-Scale Hydroponic Chamber for Sustainable Vegetative Propagation from Cuttings: A Basil ( Ocimum basilicum L.)

Author

Listed:
  • Angélica Nohemí Cardona Rodríguez

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
    These authors contributed equally to this work.)

  • Carlos Alberto Olvera-Olvera

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico)

  • Santiago Villagrana-Barraza

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico)

  • Ma. Auxiliadora Araiza-Ezquivel

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico)

  • Diana I. Ortíz-Esquivel

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico)

  • Luis Octavio Solís-Sánchez

    (Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico)

  • Germán Díaz-Flórez

    (Laboratorio de Invenciones Aplicadas a la Industria, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
    These authors contributed equally to this work.)

Abstract

Urban agriculture in space-constrained cities requires compact, reproducible propagation systems. Therefore, the aim of this Technical Note is to design, implement, and functionally validate a low-cost, modular hydroponic chamber (SSHG) for early-stage vegetative propagation. This system couples DHT11-based temperature/RH monitoring with rule-based actuation—irrigation 4×/day and temperature-triggered ventilation—under the control of an Arduino Uno microcontroller; LED lighting was not controlled nor analyzed. Two 15-day trials with basil ( Ocimum basilicum L.) yielded rooting rates of 61.7% (37/60) and 43.3% (26/60) under a deliberate minimal-input configuration without nutrient solutions or rooting hormones. Environmental summaries and spatial survival maps revealed edge-effect patterns and RH variability that inform irrigation layout improvements. The chamber, bill of materials, and protocol are documented to support replication and iteration. Thus, the SSHG provides a transferable baseline for educators and researchers to audit, reproduce, and improve small-footprint, controlled-environment propagation. Beyond its technical feasibility, the SSHG contributes to sustainability by leveraging low-cost, readily available components, enabling decentralized seedling production in space-constrained settings, and operating under a minimal-input configuration. In line with widely reported hydroponic efficiencies (e.g., lower water use relative to soil-based propagation), this open and replicable platform aligns with SDGs 2, 11, 12, and 13.

Suggested Citation

  • Angélica Nohemí Cardona Rodríguez & Carlos Alberto Olvera-Olvera & Santiago Villagrana-Barraza & Ma. Auxiliadora Araiza-Ezquivel & Diana I. Ortíz-Esquivel & Luis Octavio Solís-Sánchez & Germán Díaz-Fl, 2025. "Design and Implementation of a Small-Scale Hydroponic Chamber for Sustainable Vegetative Propagation from Cuttings: A Basil ( Ocimum basilicum L.)," Sustainability, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8773-:d:1761666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathrin Specht & Felix Zoll & Henrike Schümann & Julia Bela & Julia Kachel & Marcel Robischon, 2019. "How Will We Eat and Produce in the Cities of the Future? From Edible Insects to Vertical Farming—A Study on the Perception and Acceptability of New Approaches," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    2. Neiko V. Nikolov & Atanas Z. Atanasov & Boris I. Evstatiev & Valentin N. Vladut & Sorin-Stefan Biris, 2023. "Design of a Small-Scale Hydroponic System for Indoor Farming of Leafy Vegetables," Agriculture, MDPI, vol. 13(6), pages 1-13, June.
    3. Pinar Kirci & Erdinc Ozturk & Yavuz Celik, 2022. "A Novel Approach for Monitoring of Smart Greenhouse and Flowerpot Parameters and Detection of Plant Growth with Sensors," Agriculture, MDPI, vol. 12(10), pages 1-21, October.
    4. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    5. Dafni Despoina Avgoustaki & George Xydis, 2020. "Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donald Coon & Lauren Lindow & Ziynet Boz & Ana Martin-Ryals & Ying Zhang & Melanie Correll, 2024. "Reporting and practices of sustainability in controlled environment agriculture: a scoping review," Environment Systems and Decisions, Springer, vol. 44(2), pages 301-326, June.
    2. Caixia Ivy Gan & Ruth Soukoutou & Denise Maria Conroy, 2022. "Sustainability Framing of Controlled Environment Agriculture and Consumer Perceptions: A Review," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    3. Adrián Csordás & István Füzesi, 2023. "The Impact of Technophobia on Vertical Farms," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    4. Hemeng Zhou & Kathrin Specht & Caitlin K. Kirby, 2022. "Consumers’ and Stakeholders’ Acceptance of Indoor Agritecture in Shanghai (China)," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    5. Garrett M. Broad & Wythe Marschall & Maya Ezzeddine, 2022. "Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 417-433, March.
    6. Nan Wang & Li Zhu & Yuanhao Bing & Liwei Chen & Shulang Fei, 2021. "Assessment of Urban Agriculture for Evidence-Based Food Planning: A Case Study in Chengdu, China," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    7. Qureshi, Salman & Tarashkar, Mahsa & Matloobi, Mansour & Wang, Zhifang & Rahimi, Akbar, 2022. "Understanding the dynamics of urban horticulture by socially-oriented practices and populace perception: Seeking future outlook through a comprehensive review," Land Use Policy, Elsevier, vol. 122(C).
    8. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    9. Larisa Ivascu & David Frank Ahimaz & Benedict Valentine Arulanandam & Gelu-Ovidiu Tirian, 2021. "The Perception and Degree of Adoption by Urbanites towards Urban Farming," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    10. Wojciech Lewicki & Mariusz Niekurzak & Adam Koniuszy, 2025. "Evaluation of the Possibility of Using a Home Wind Installation as Part of the Operation of Hybrid Systems—A Selected Case Study of Investment Profitability Analysis," Energies, MDPI, vol. 18(8), pages 1-24, April.
    11. Michael Martin & Sofia Poulikidou & Elvira Molin, 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    12. Jiu Xu & Lili Zhangzhong & Peng Lu & Yihan Wang & Qian Zhao & Youli Li & Lichun Wang, 2025. "Analysis of Irrigation, Crop Growth and Physiological Information in Substrate Cultivation Using an Intelligent Weighing System," Agriculture, MDPI, vol. 15(10), pages 1-20, May.
    13. Mina, Giorgio & Peira, Giovanni & Bonadonna, Alessandro, 2023. "Public perception and social sustainability of indoor farming technologies: A systematic review," Technology in Society, Elsevier, vol. 75(C).
    14. Heino Pesch & Louis Louw, 2023. "Evaluating the Economic Feasibility of Plant Factory Scenarios That Produce Biomass for Biorefining Processes," Sustainability, MDPI, vol. 15(2), pages 1-36, January.
    15. Francis J. Baumont de Oliveira & Scott Ferson & Ronald A. D. Dyer & Jens M. H. Thomas & Paul D. Myers & Nicholas G. Gray, 2022. "How High Is High Enough? Assessing Financial Risk for Vertical Farms Using Imprecise Probability," Sustainability, MDPI, vol. 14(9), pages 1-29, May.
    16. Marilyne Chicoine & Francine Rodier & Fabien Durif, 2023. "The bright and the dark side of commercial urban agriculture labeling," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(3), pages 1153-1170, September.
    17. Neiko V. Nikolov & Atanas Z. Atanasov & Boris I. Evstatiev & Valentin N. Vladut & Sorin-Stefan Biris, 2023. "Design of a Small-Scale Hydroponic System for Indoor Farming of Leafy Vegetables," Agriculture, MDPI, vol. 13(6), pages 1-13, June.
    18. Atubi Akpomena Clinton & Adewolu Adeoye Olugbenga, 2025. "Role Of Architecture In Nigeria'S Agricultural Sector: A Systematic Review," Social Sciences and Education Research Review, Department of Communication, Journalism and Education Sciences, University of Craiova, vol. 12(1), pages 277-282, July.
    19. Dsouza, Ajwal & Newman, Lenore & Graham, Thomas & Fraser, Evan D.G., 2023. "Exploring the landscape of controlled environment agriculture research: A systematic scoping review of trends and topics," Agricultural Systems, Elsevier, vol. 209(C).
    20. Aysan Safavi & Runa Thrastardottir & Ragnheidur I. Thorarinsdottir & Runar Unnthorsson, 2024. "Insect Production: A Circular Economy Strategy in Iceland," Sustainability, MDPI, vol. 16(20), pages 1-25, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8773-:d:1761666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.