Author
Listed:
- Wen Long
(School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
CAS Research Center On Fictitious Economy & Data Science, Beijing 100190, China
Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China)
- Dechuan Liu
(School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China)
- Wei Zhang
(School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China)
Abstract
Small and medium-sized enterprises (SMEs) often face severe resource constraints and operational fragility during crises. However, little is known about how managerial resilience (MR) translates into performance through time-related psychological resources and innovation—two capabilities that are both scarce and critical under such conditions. Drawing on Temporal Motivation Theory (TMT), this study develops and tests a dual-mediation model in which employee temporal psychological capital (TPC) and employee innovative behavior (EIB) transmit the effects of MR on performance. As a core methodological innovation, we adopt a multi-method analytical strategy to provide robust and complementary evidence rather than a hierarchy of results: Partial Least Squares Structural Equation Modeling (PLS-SEM) is used to examine sufficiency-based causal pathways and quantify the mediating mechanisms; Support Vector Machine (SVM) classification offers a non-parametric predictive validation of how MR and its mediators distinguish high- and low-performance cases; and Necessary Condition Analysis (NCA) identifies non-compensatory conditions that must be present for high performance to occur. These three methods address different research questions—sufficiency, classification robustness, and necessity—therefore serving as parallel, equally important components of the analysis. A total of 455 SME managers and employees were surveyed, and results show that MR significantly enhances all three dimensions of TPC (temporal control, temporal fit, time pressure resilience) and EIB (idea generation, idea promotion, idea realization), which in turn improve employee performance. SVM classification confirms that high MR, strong TPC, and active innovation align with high performance, while NCA reveals temporal control, idea generation, and idea realization as necessary bottleneck conditions. By integrating sufficiency–necessity logic with predictive classification, our findings suggest that SMEs should prioritize leadership resilience training to strengthen managers’ adaptive capacity, while simultaneously implementing time management interventions—such as temporal control workshops, workload balancing, and innovation pipeline support—to enhance employees’ ability to align tasks with organizational timelines, execute ideas effectively, and sustain performance during crises.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:17:p:7920-:d:1741189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.