IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6893-d1712667.html
   My bibliography  Save this article

Advanced Global CO 2 Emissions Forecasting: Enhancing Accuracy and Stability Across Diverse Regions

Author

Listed:
  • Adham Alsharkawi

    (Department of Mechatronics Engineering, The University of Jordan, Amman 11942, Jordan)

  • Emran Al-Sherqawi

    (Member of the IUCN Climate Crisis Commission, 1196 Gland, Switzerland)

  • Kamal Khandakji

    (Department of Electrical Power and Mechatronics Engineering, Tafila Technical University, Tafila 66110, Jordan)

  • Musa Al-Yaman

    (Department of Mechatronics Engineering, The University of Jordan, Amman 11942, Jordan)

Abstract

This study introduces a robust global time-series forecasting model developed to estimate CO 2 emissions across diverse regions worldwide. The model employs a deep learning architecture with multiple hidden layers, ensuring both high predictive accuracy and temporal stability. Our methodology integrates innovative training strategies and advanced optimization techniques to effectively handle heterogeneous time-series data. Emphasis is placed on the critical role of accurate and stable forecasts in supporting evidence-based policy-making and promoting environmental sustainability. This work contributes to global efforts to monitor and mitigate climate change, in alignment with the United Nations Sustainable Development Goals (SDGs).

Suggested Citation

  • Adham Alsharkawi & Emran Al-Sherqawi & Kamal Khandakji & Musa Al-Yaman, 2025. "Advanced Global CO 2 Emissions Forecasting: Enhancing Accuracy and Stability Across Diverse Regions," Sustainability, MDPI, vol. 17(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6893-:d:1712667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    2. Akan, Taner, 2025. "Forecasting the future of carbon emissions by business confidence," Applied Energy, Elsevier, vol. 382(C).
    3. Yuan, Hong & Ma, Xin & Ma, Minda & Ma, Juan, 2024. "Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries," Applied Energy, Elsevier, vol. 360(C).
    4. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    5. Peng Zhu & Han Zhang & Yunsheng Shi & Wanli Xie & Mingyong Pang & Yuhui Shi, 2025. "A novel discrete conformable fractional grey system model for forecasting carbon dioxide emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 13581-13609, June.
    6. Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
    7. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    8. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    9. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    10. Zhong, Weiyi & Zhai, Dengshuai & Xu, Wenran & Gong, Wenwen & Yan, Chao & Zhang, Yang & Qi, Lianyong, 2024. "Accurate and efficient daily carbon emission forecasting based on improved ARIMA," Applied Energy, Elsevier, vol. 376(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    2. Petropoulos, Fotios & Spiliotis, Evangelos, 2025. "Judgmental selection of parameters for simple forecasting models," European Journal of Operational Research, Elsevier, vol. 323(3), pages 780-794.
    3. Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
    4. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    5. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    6. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    7. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    8. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    9. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    10. Neubauer, Lukas & Filzmoser, Peter, 2024. "Improving forecasts for heterogeneous time series by “averaging”, with application to food demand forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1622-1645.
    11. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    12. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    13. Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
    14. Katsikopoulos, Konstantinos V. & Şimşek, Özgür & Buckmann, Marcus & Gigerenzer, Gerd, 2022. "Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 613-619.
    15. Vogl, Markus & Kojić, Milena & Sharma, Abhishek & Stanisic, Nikola, 2025. "Decoding financial markets: Empirical DGPs as the key to model selection and forecasting excellence – A proof of concept," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 666(C).
    16. Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
    17. Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    20. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6893-:d:1712667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.