Author
Listed:
- Yousef Elbaz
(Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)
- Aman Mwafy
(Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)
- Hilal El-Hassan
(Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)
- Tamer El-Maaddawy
(Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)
Abstract
The production of ordinary Portland cement has had a significant environmental impact, leading to increased interest in sustainable alternatives. This comprehensive review thus explores the performance and applications of rubberized alkali-activated concrete (RuAAC), an innovative material combining alkali-activated concrete with crumb rubber (CR) from waste tires as a coarse/fine aggregate replacement. The study examined current research on the components, physical and mechanical properties, and seismic performance of RuAAC structures. Key findings revealed that CR addition enhances dynamic characteristics while reducing compressive strength by up to 63% at 50% CR replacement, though ductility improvements partially offset this reduction. Novel CR pretreatment methods, such as eggshell catalyzation, can enhance seismic resilience potential. While studies on the structural seismic performance of RuAAC are limited, relevant research on rubberized conventional concrete indicated several potential benefits, highlighting a critical gap in the current body of knowledge. Research on the behavior of RuAAC in full-scale structural elements and under seismic loading conditions remains notably lacking. By examining existing research and identifying crucial research gaps, this review provides a foundation for future investigations into the structural behavior and seismic response of RuAAC, potentially paving the way for its practical implementation in earthquake-resistant and sustainable construction.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6043-:d:1692662. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.