IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p6001-d1691013.html
   My bibliography  Save this article

A Comparison of the Cost-Effectiveness of Alternative Fuels for Shipping in Two GHG Pricing Mechanisms: Case Study of a 24,000 DWT Bulk Carrier

Author

Listed:
  • Jinyu Zou

    (College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Penghao Su

    (College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Chunchang Zhang

    (Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)

Abstract

The 83rd session of the IMO Maritime Environment Protection Committee (MEPC 83) approved a global pricing mechanism for the shipping industry, with formal adoption scheduled for October 2025. Proposed mechanisms include the International Maritime Sustainable Fuels and Fund (IMSF&F) and a combined approach integrating GHG Fuel Standards with Universal GHG Contributions (GFS&UGC). This study developed a model based on the marginal abatement cost curve (MACC) methodology to assess the cost-effectiveness of alternative fuels under both mechanisms. Sensitivity analyses evaluated the impacts of fuel prices, carbon prices, and the GHG Fuel Intensity (GFI) indicator on MAC. Results indicate that implementing the GFS&UGC mechanism yields higher net present values (NPVs) and lower MACs compared to IMSF&F. Introducing universal GHG contributions promotes a comparatively fairer transition to sustainable shipping fuels. Investments in zero- or near-zero-fueled (ZNZ) ships are unlikely to be recouped by 2050 unless carbon prices rise sufficiently to boost revenues. Bio-Methanol and bio-diesel emerged as the most cost-competitive ZNZ options in the long term, while e-Methanol’s poor competitiveness stems from its extremely high price. Both pooling costs and universal GHG levies significantly reduce LNG’s economic viability over the study period. MACs demonstrated greater sensitivity to fuel prices ( P fuel ) than to carbon prices ( P carbon ) or GFI within this study’s parameterization scope, particularly under GFS&UGC. Ratios of P carbon %/ P fuel % in equivalent sensitivity scenarios were quantified to determine relative price importance. This work provides insights into fuel selection for shipping companies and supports policymakers in designing effective GHG pricing mechanisms.

Suggested Citation

  • Jinyu Zou & Penghao Su & Chunchang Zhang, 2025. "A Comparison of the Cost-Effectiveness of Alternative Fuels for Shipping in Two GHG Pricing Mechanisms: Case Study of a 24,000 DWT Bulk Carrier," Sustainability, MDPI, vol. 17(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6001-:d:1691013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/6001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/6001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Parris & Konstantinos Spinthiropoulos & Konstantina Ragazou & Anna Giovou & Constantinos Tsanaktsidis, 2024. "Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review," Energies, MDPI, vol. 17(3), pages 1-28, January.
    2. Sotiria Lagouvardou & Benjamin Lagemann & Harilaos N. Psaraftis & Elizabeth Lindstad & Stein Ove Erikstad, 2023. "Marginal abatement cost of alternative marine fuels and the role of market-based measures," Nature Energy, Nature, vol. 8(11), pages 1209-1220, November.
    3. Sotiria Lagouvardou & Benjamin Lagemann & Harilaos N. Psaraftis & Elizabeth Lindstad & Stein Ove Erikstad, 2023. "Author Correction: Marginal abatement cost of alternative marine fuels and the role of market-based measures," Nature Energy, Nature, vol. 8(12), pages 1417-1417, December.
    4. Chunchang Zhang & Jia Zhu & Huiru Guo & Shuye Xue & Xian Wang & Zhihuan Wang & Taishan Chen & Liu Yang & Xiangming Zeng & Penghao Su, 2024. "Technical Requirements for 2023 IMO GHG Strategy," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    5. Yanfang Zhao & Feng Liu & Yuanyuan Zhang & Zhanli Wang & Zhen Song & Guanjie Zan & Zhihuan Wang & Huiru Guo & Hanzhe Zhang & Jia Zhu & Penghao Su, 2024. "Economic Assessment of Maritime Fuel Transformation for GHG Reduction in the International Shipping Sector," Sustainability, MDPI, vol. 16(23), pages 1-14, December.
    6. Koizumi, Tatsuji, 2015. "Biofuels and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 829-841.
    7. Ahmed, Shoaib & Li, Tie & Zhou, Xin Yi & Yi, Ping & Chen, Run, 2025. "Quantifying the environmental footprints of biofuels for sustainable passenger ship operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    8. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Kanchiralla, Fayas Malik & Brynolf, Selma & Olsson, Tobias & Ellis, Joanne & Hansson, Julia & Grahn, Maria, 2023. "How do variations in ship operation impact the techno-economic feasibility and environmental performance of fossil-free fuels? A life cycle study," Applied Energy, Elsevier, vol. 350(C).
    10. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    12. Hyunyong Lee & Jinkwang Lee & Gilltae Roh & Sangick Lee & Choungho Choung & Hokeun Kang, 2024. "Comparative Life Cycle Assessments and Economic Analyses of Alternative Marine Fuels: Insights for Practical Strategies," Sustainability, MDPI, vol. 16(5), pages 1-33, March.
    13. Youngkyun Seo & Jiyoung An & Eunyoung Park & Jintae Kim & Meangik Cho & Seongjong Han & Jinkwang Lee, 2024. "Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier," Sustainability, MDPI, vol. 16(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Douglas, Christopher M. & Shanbhogue, Santosh & Ghoniem, Ahmed & Zang, Guiyan, 2025. "Well-to-wake cost and emissions assessments for the Western Australia–East Asia green shipping corridor," Applied Energy, Elsevier, vol. 384(C).
    3. Xinyu Liu & Guogang Yang & Baixun Sun & Jihui Li & Yinhui Sun, 2025. "Numerical Simulation Study on the Dynamic Diffusion Characteristics of Ammonia Leakage in Ship Engine Room," Sustainability, MDPI, vol. 17(9), pages 1-20, April.
    4. Ollila, Saana & Bratt Börjesson, Maria & Proost, Stef, 2025. "Climate agreements in the international shipping sector," Working Papers 2025:2, Swedish National Road & Transport Research Institute (VTI).
    5. Clara Bachorz & Philipp C. Verpoort & Gunnar Luderer & Falko Ueckerdt, 2025. "Exploring techno-economic landscapes of abatement options for hard-to-electrify sectors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Tan, Zhijia & Shao, Shuai & Zhang, Di & Shang, Wen-Long & Ochieng, Washington & Han, Yi, 2024. "Decarbonizing the inland container fleet with carbon cap-and-trade scheme," Applied Energy, Elsevier, vol. 376(PB).
    9. Yanfang Zhao & Feng Liu & Yuanyuan Zhang & Zhanli Wang & Zhen Song & Guanjie Zan & Zhihuan Wang & Huiru Guo & Hanzhe Zhang & Jia Zhu & Penghao Su, 2024. "Economic Assessment of Maritime Fuel Transformation for GHG Reduction in the International Shipping Sector," Sustainability, MDPI, vol. 16(23), pages 1-14, December.
    10. Martínez-López, Alba & Marrero, África & Romero-Filgueira, Alejandro, 2024. "Assessment of emerging technologies for high-speed-crafts decarbonization under the European Union regulation," Research in Transportation Economics, Elsevier, vol. 108(C).
    11. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    12. Guven, Denizhan, 2025. "Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye," Applied Energy, Elsevier, vol. 377(PD).
    13. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Ahmed, Shoaib & Li, Tie & Zhou, Xin Yi & Yi, Ping & Chen, Run, 2025. "Quantifying the environmental footprints of biofuels for sustainable passenger ship operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    15. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Evers, V.H.M. & Kirkels, A.F. & Godjevac, M., 2023. "Carbon footprint of hydrogen-powered inland shipping: Impacts and hotspots," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    18. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Hee Seung Moon & Won Young Park & Thomas Hendrickson & Amol Phadke & Natalie Popovich, 2025. "Exploring the cost and emissions impacts, feasibility and scalability of battery electric ships," Nature Energy, Nature, vol. 10(1), pages 41-54, January.
    20. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6001-:d:1691013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.