IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5903-d1688386.html
   My bibliography  Save this article

The Role of Sustainable Lithium Processing in Renewable Energy Development: A Comprehensive Review and the Potential of Kazakhstan Deposits

Author

Listed:
  • Daulet Sagzhanov

    (Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, 1-1 Tegata-Gakuen machi, Akita 010-8502, Japan)

  • Labone L. Godirilwe

    (Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, 1-1 Tegata-Gakuen machi, Akita 010-8502, Japan)

  • Batnasan Altansukh

    (Department of Inorganic Chemistry and Technology, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, 4th Building, Peace Avenue, Bayanzurkh District, Ulaanbaatar 13330, Mongolia)

  • Yasushi Takasaki

    (Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, 1-1 Tegata-Gakuen machi, Akita 010-8502, Japan)

  • Atsushi Shibayama

    (Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, 1-1 Tegata-Gakuen machi, Akita 010-8502, Japan)

Abstract

Lithium, a critical element for clean energy and modern technologies, plays an indispensable role in advancing renewable energy storage, electric vehicles, and high-tech industries. The rapidly growing demand for lithium, along with its limited global production, has led to concerns about the sustainability of current extraction and processing technologies for efficient lithium recovery. This comprehensive review explores global trends in lithium processing, focusing on spodumene beneficiation and extraction techniques. While highlighting well-established conventional processes, such as dense media separation (DMS), flotation, high-temperature roasting, and acid or alkali treatment, it underscores the environmental and economic challenges of these processes, particularly when applied to low-grade lithium ores, which are increasingly being targeted to meet lithium demand. Innovative methods, such as microwave irradiation, are also explored for their potential to improve process efficiency, reduce energy consumption, and minimize environmental impact, offering promising pathways to overcome the limitations of traditional lithium recovery techniques. A significant contribution of this review is its focus on the largely untapped lithium resources of Kazakhstan, presenting geological insights and the potential for sustainable development. By addressing knowledge gaps and integrating technological, eco-friendly, and regional development perspectives, this study provides valuable insights for advancing lithium processing toward more sustainable and circular practices aligned with global climate and resource efficiency goals.

Suggested Citation

  • Daulet Sagzhanov & Labone L. Godirilwe & Batnasan Altansukh & Yasushi Takasaki & Atsushi Shibayama, 2025. "The Role of Sustainable Lithium Processing in Renewable Energy Development: A Comprehensive Review and the Potential of Kazakhstan Deposits," Sustainability, MDPI, vol. 17(13), pages 1-49, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5903-:d:1688386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Guido Busca, 2024. "Critical Aspects of Energetic Transition Technologies and the Roles of Materials Chemistry and Engineering," Energies, MDPI, vol. 17(14), pages 1-32, July.
    3. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    4. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    5. Li, Zehong & Wang, Chunying & Chen, Jian, 2024. "Supply and demand of lithium in China based on dynamic material flow analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    6. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    8. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    9. Nasajpour-Esfahani, Navid & Garmestani, Hamid & Bagheritabar, Mohsen & Jasim, Dheyaa J. & Toghraie, D. & Dadkhah, Shohreh & Firoozeh, Hooman, 2024. "Comprehensive review of lithium-ion battery materials and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    10. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    11. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    12. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
    13. Ashraf Mishrif & Asharul Khan, 2023. "Clean Energy Transition through the Sustainable Exploration and Use of Lithium in Oman: Potential and Challenges," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    14. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    15. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Fadhila Achmadi Rosyid & Tsuyoshi Adachi, 2016. "Coal mining in Indonesia: forecasting by the growth curve method," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 29(2), pages 71-85, December.
    17. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    18. Fernando Aguilar Lopez & Romain G. Billy & Daniel B. Müller, 2022. "A product–component framework for modeling stock dynamics and its application for electric vehicles and lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1605-1615, October.
    19. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5903-:d:1688386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.