IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15173-d1265585.html
   My bibliography  Save this article

Clean Energy Transition through the Sustainable Exploration and Use of Lithium in Oman: Potential and Challenges

Author

Listed:
  • Ashraf Mishrif

    (Humanities Research Centre, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 17, Oman)

  • Asharul Khan

    (Humanities Research Centre, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 17, Oman)

Abstract

This study is probably the first of its kind to explore the potential and challenges of developing a clean energy transition through sustainable exploration and the use of lithium in Oman’s mining industry. This study explains how growing energy and environmental concerns significantly intensify interest in electric vehicles and hybrid electric vehicles, consequently increasing the demand for lithium exploration and production. Whereas Umm as Samim and Mahout are usually identified as major resources for a potential lithium commodity, this study uses statistical data from Oman’s National Center of Statistics and Information (NCSI) to determine the quantity and value of salt, lithium production, and sales to assess their commercial viability. The findings reveal that Oman has huge potential for lithium exploitation and production, considering the enormous quantities of spodumene and seawater salt with high-grade lithium available, developing efficient regulations and rules to protect investors’ rights, and reducing the environmental risks associated with the production and recycling of lithium-ion batteries. The realization of this potential cannot be attained until serious challenges in the country’s regulations, environmental hazards, and investment strategy are overcome. This study concludes by offering some practical and policy implications.

Suggested Citation

  • Ashraf Mishrif & Asharul Khan, 2023. "Clean Energy Transition through the Sustainable Exploration and Use of Lithium in Oman: Potential and Challenges," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15173-:d:1265585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    3. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    4. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    6. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    7. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    8. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    9. Lin, Shunda & Liu, Renlong & Guo, Shenghui, 2022. "High temperature microwave dielectric and thermochemical properties of waste LixMn2O4 battery cathode materials reduced by moso bamboo," Renewable Energy, Elsevier, vol. 181(C), pages 714-724.
    10. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    11. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Fadhila Achmadi Rosyid & Tsuyoshi Adachi, 2016. "Coal mining in Indonesia: forecasting by the growth curve method," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 29(2), pages 71-85, December.
    13. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    14. Fernando Aguilar Lopez & Romain G. Billy & Daniel B. Müller, 2022. "A product–component framework for modeling stock dynamics and its application for electric vehicles and lithium‐ion batteries," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1605-1615, October.
    15. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.
    17. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    18. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    19. Jia, Yikai & Yin, Sha & Liu, Binghe & Zhao, Hui & Yu, Huili & Li, Jie & Xu, Jun, 2019. "Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading," Energy, Elsevier, vol. 166(C), pages 951-960.
    20. Weimer, Lucas & Braun, Tobias & Hemdt, Ansgar vom, 2019. "Design of a systematic value chain for lithium-ion batteries from the raw material perspective," Resources Policy, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15173-:d:1265585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.